Synaptotagmin restores kinetic properties of a syntaxin-associated N-type voltage sensitive calcium channel

Ofer Wiser, Dror Tobi, Michael Trus, Daphne Atlas*

Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Received 13 January 1997; revised version received 26 January 1997

Abstract The voltage sensitive N-type calcium channel interacts functionally and biochemically with synaptotagmin (p65). N-type channel interaction with p65 is demonstrated in the Xenopus oocyte expression system, where p65 alters the steady state voltage inactivation of the N-channel, and fully restores the syntaxin-modified current amplitude and inactivation kinetics in a calcium dependent manner. In agreement with the functional results, GST-p65 fusion protein binds to a cytosolic region, amino acids 710–1090 of the N-type channel (N-loop710–1090). The results of the combined approach provide a functional and biochemical basis for proposing that p65 interaction with the N-type channel brings p65 into a close association with a syntaxin-coupled channel. In turn, calcium entry through the liberated channel initiates fusion of the primed vesicles with the cell membrane at a short distance from the site of calcium entry.

© 1997 Federation of European Biochemical Societies.

Key words: N-type calcium channel; Transmitter release; Synaptotagmin; Syntaxin; SNAP-25

1. Introduction

Synaptotagmin (p65) is a vesicular calcium-binding protein initially proposed to play an essential role in the process of regulated secretion [1, 2]. Association of the N-type channel with p65 [3] was demonstrated in immuno precipitation experiments which also suggested the formation of a ternary complex with syntaxin [3–8]. A functional role for p65 has been indicated by genetic studies [9, 10], microinjection into squid neurons [11] and PC12 cells [12], interaction with neurexins [13] and analysis of mutation in the p65 gene in mice [14, 15]. Further support for the role of p65 in the transmitter release process was inferred from its ability to bind phospholipids [16–19]. The calcium binding sites of p65 are localized at the C2 domains [20, 21] and recently, the three-dimensional structure of the C2A domain was elucidated to establish a new calcium binding motif [22]. p65 binding to syntaxin is calcium dependent and is confined to the C2A domain [18, 23].

Previously, we and others have shown that co-expression of the N-type Ca2+ channel with cRNA of syntaxin in the Xenopus oocyte expression system modifies current properties and channel kinetics [24, 25]. The modified channel properties are further modulated by SNAP-25 [25]. Syntaxin interaction with the N-type calcium channel was demonstrated as inward current inhibition and a decrease in the rate of inactivation [24, 25]. Coexpression of SNAP-25 with syntaxin 1A restores current amplitude but does not recover the time constant of inactivation [25]. To explore a putative functional N-type channel interaction with p65 and to further establish channel/syntaxin/SNAP-25/p65 relationships, we combined physiological studies using the oocyte expression system with in vitro binding of recombinant cytosolic N-channel fragment to GST-p65 recombinant fusion protein.

Here we show by utilizing the oocyte expression system that p65 modifies the kinetic properties of both the N-type channel and an N-type channel/syntaxin putative complex. In vitro binding assays of recombinant fusion proteins demonstrate a direct Ca2+ dependent interaction of p65 with a cytosolic loop separating repeats II and III of the N-type channel (N-loop710–1090). These results provide a functional and biochemical basis for a close association of the N-type channel with the synaptic vesicle. A sequential interaction of the N-type channel with syntaxin and p65 may be important for the efficient synaptic transmission.

2. Materials and methods

2.1. Materials

The following plasmids were kindly provided: GST-syntaxin (amino acids 4–267), GST-SNAP-25 (full length) and anti-p65 antibodies by M.K. Bennett. GST-p65(1–3; amino acid 96–265), p65(1–5; amino acid 96–421) and p65(3–5; amino acid 248–421) by R.H. Scheller and T.C. Südhof; full length αSN subunits by A. Schwartz, B3A by X. Wei and L. Birnbaumer and r86k by T.P. Snutch. Expression vector pGEX-KG was from Pharmacia and pQE was from Qiagen. Glutathione-aracose-4B (GSH) beads, IPTG, G(3)ppp(3)G were from Pharmacia (USA).

2.2. Expression in Xenopus oocytes and cRNA injection

Xenopus laevis oocytes, stage V–VI, were removed surgically from the ovaries of anesthetized animals and transferred to a Ca2+ free ND96 buffer: 96 mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM HEPES, pH 7.4 containing 2 mg/ml collagenase (154 U/ml, Worthington Biochem., USA). The follicular cell layer was removed by shaking the oocytes in this buffer for 1.5–2 h at 23°C [25]. Plasmid DNAs were linearized, treated with proteinase K and transcribed with T7 polymerase (Stratagene kit), in the presence of the cap analog G(3)ppp(3)G. Before injection, cRNA samples were examined on ethidium bromide-stained denatured agarose gel to verify the correct size of a single undegraded band, and cRNA concentrations were determined by absorbance at 260 nm.

2.3. Electrophysiological assays

Whole cell currents were recorded by applying standard two-microelectrode voltage clamp using a Dagan 8500 amplifier. Voltage and current agar cushioned electrodes (0.3–0.6 MΩ tip resistance) filled with 3 M KCl were used [28]. Oocytes were injected with 40 nl of 50 mM BPATA [1,2-bis(aminophenoxyl)ethane-N,N,N',N"-tetraacetic acid], or EGTA [ethylene glycol bis(α-aminoeythylether)N,N',N",N"-tetraacetic acid], pH 7.0 prior to recording, as indicated. Current-voltage relationships were determined as follows: the oocytes were impaled in ND96 buffer and inward current changes were monitored by voltage steps from −80 to +60 mV of 500 ms duration, with 30 s intervals, in Ba2+ solution: 40 mM Ba(OH)2; 50 mM NMDG: 1 mM KOH; 5 mM HEPES pH 7.5; or Ca2+ solution: 5 mM Ca(OH)2; 85 mM NMDG: 1 mM KOH; 5 mM HEPES, pH 7.5. The buffers were

*Corresponding author. Fax: (972) (2) 6585413.
E-mail: daphnea@leonardo.ls.huji.ac.il

0014-5793/97/$17.00 © 1997 Federation of European Biochemical Societies. All rights reserved.
PUB 0014-5793 (97) 00130-0
titrated to pH 7.5 with methyl sulfate. Voltage dependent inactivation was carried out as previously described [25]. The rate of inactivation was analyzed by a single exponential decay fit $A = A \exp(-t/\tau)$ $+B$, where $A = \text{current amplitude}$; $t = \text{rate constant}$; $\tau = \text{ms}$ and $B = \text{non-inactivating current}$.

 steady state voltage dependent inactivation was fitted by a single Boltzmann distribution with normalized current $I_C/(1+\exp(E_{00}-E_{0}\delta/K))$ $+(1-C)$, where $C = \text{maximal steady-state inactivating current}$, $E_{00} = \text{midpoint of inactivation}$, E_{0} is the conditioning voltage and $\delta = \text{slope parameter}$. The software packages are pClamp 6.0 (Axon Instruments, CA), and Origin 3.7 (MicroCal).

2.4. Construction and expression of recombinant GST and His fusion proteins

N-channel fragment was prepared from rat brain a1B1 cDNA (rBB-1) excised by EcoRI (2128 bp) and SstI (3371 bp), filled in and ligated to pQE30 (Qiagen).

All constructs were transformed into the protease deficient strain BL21pLysS of Escherichia coli (Novagen). Fusion proteins were prepared essentially according to Guan and Dixon [29]. Free syntaxin and SNAP-25 were prepared by thrombin cleavage of the corresponding purified GST fusion proteins.

Purification of His-N-loop of A was carried out according to Qiagen protocols.

2.5. In vitro binding assays and Western blotting

GST fusion proteins (100 pmol), determined by Coomassie blue evaluation on SDS-PAGE, were bound to GSH beads (25 μl) in PBS: 140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 18 mM K2HPO4, pH 7.3 and 0.05% Tween 20, for 30 min at 23°C. Then the beads were washed with PBS buffer (0.1 ml×2) and binding to purified His-N-loop of A (100 pmol) was carried out in PBS buffer containing 1 mg/ml bovine serum albumin, for 1 h with gentle mixing at 23°C. Beads were washed (1 ml×3) in PBS containing 0.1% Triton X-100 at 4°C. Bound proteins were eluted with 15 mM glutathione in 50 mM Tris-HCl, pH 8.0, removed from the beads by 1 min centrifugation (3500 rpm) and applied to SDS-PAGE (or analysis). Immunoblots were probed using affinity purified antibodies generated against a peptide sequence, RRHRHRDRDKTSAFT [30], at the N-loop region and visualized by enhanced chemiluminescence (ECL) system.

3. Results

3.1. Functional interaction of synaptotagmin (p65) with the N-type Ca2+ channel

Inward currents generated by N-type calcium channel subunits (a1B1/2/8/β2A) expressed in Xenopus oocytes are significantly modified when coexpressed with syntaxin and SNAP-25 [25]. In the present study we have examined the effect of p65 on N-type calcium channel. Inward Ba2+ currents (a1B1/2/8/β2A), evoked from a holding potential of −80 mV to various test potentials in 10 mV increments, were tested in Xenopus oocytes coexpressing the channel subunits with p65 (Fig. 1A–C). As shown in the current-voltage relationship, current amplitude is not affected by p65 (< 5% at test pulse to +20 mV) (Fig. 1A). Similarly, there is no significant effect of p65 on the rate of inactivation, measured at the range of −10 to +50 mV (Fig. 1B). However, analysis of the steady state voltage dependent inactivation shows a 10 nV shift in the midpoint of inactivation (E0) toward more depolarizing potentials by expressing p65 (−19 ± 1 to −9 ± 2 mV), and the slope parameter changes from 10 ± 1 to 21 ± 6 (Fig. 1C).

As previously shown, when syntaxin is co-expressed with the channel there is a strong reduction in current amplitude and a decrease in the rate of inactivation [25]. This reduction in evoked current amplitude imparted by syntaxin 1A is hardly affected by p65 (Fig. 2A). However, the reduced rate of inactivation is partially reversed by p65, from $\tau = 3.2 ± 0.3$ s in the presence of syntaxin to $2.5 ± 0.3$ s when both syntaxin and p65 are coexpressed (Fig. 2B,C).

In the experiments presented above, syntaxin-modified N-channel properties were determined with Ba2+ as the charge carrier and BAPTA, the calcium chelator. Substituting Ca2+ for Ba2+ and EGTA for BAPTA shows that similar to Ba2+ currents, the Ca2+ current amplitude is not affected by p65 (Fig. 3A). Conversely, current amplitude inhibited by syntaxin 1A (55% at test pulse to +20 mV), is fully reinstated by p65 (Fig. 3A). Similarly, the time constant of inactivation (τ) of the syntaxin associated channel (5.7±0.7 s), is fully recovered to the τ value of the channel alone (3.3±0.2 s; Fig. 3B). Reversal of the syntaxin reduced rate of inactivation by p65 is not affected by the presence of SNAP-25 (τ = 5.3±0.5 s to 3.1±0.5 s [25]; Fig. 3B).
Hence, p65 relaxes the channel from the syntaxin clamp, possibly by competing with the channel for syntaxin binding; this 'liberation' of the channel appears to be calcium sensitive. While both Ca\(^{2+}\) and Ba\(^{2+}\) support p65 relief of the syntaxin-channel clamp Ba\(^{2+}\) appears to be less effective perhaps due to the change in p65 specificity for Ba [15,21] (see below).

3.2. N-loopp\(^{10-100}\) binding to synaptic proteins

The functional modifications of the N-type channel's properties by p65 prompted our in vitro binding studies of recombinant p65 fusion protein to a cytosolic region of the N-type channel. Equivalent concentrations (100 pmol/300 μl) of GST-p65(1-5); amino acids 79-421) containing C2A and C2B domains, GST-p65(1-3); amino acids 96-265) containing C2A domain, GST-p65(3-5); amino acids 248-421) containing C2B domain, and GST alone, were immobilized onto GSH beads and incubated with recombinant His-N-loopp\(^{10-100}\) (N-loop; 100 pmol). Recombinant N-loop binds to p65(1-5), p65(1-3) and p65(3-5), as detected by affinity purified antibodies prepared against the N-loop peptide (Fig. 4A). Interaction specificity is demonstrated since GST protein itself does not bind N-loop (Fig. 4A, right lane). The sequence similarity and folding of the two halves of p65 may determine the almost equipotent binding of both C2 regions to the N-loop. In addition, His-N-loopp\(^{10-100}\) binds to syntaxin 1A and SNAP-25 (Tobi et al., unpublished results), confirming N-channel interaction with SNAP-25 and syntaxin [26,27].

3.3. Characterization of N-loop binding to p65: calcium dependence

The Ca\(^{2+}\) dependence of N-loopp\(^{10-100}\) binding to p65 is demonstrated by the effect of increasing Ca\(^{2+}\) concentration (Fig. 4B, upper panel). N-loopp\(^{10-100}\) binding to GST-p65(1-
calcium channel is quantitatively immunoprecipitated with anti syntaxin antibodies [3–5] suggesting that p65 can form a ternary complex with syntaxin and the N-type channel [3–8]. Recently, it was shown that p65 interacts to generate a stabilized activated complex with syntaxin and SNAP-25 and upon Ca²⁺ binding may drive the fusion reaction [33]. To further examine these possibilities we explored N-type channel functional interactions with various synaptic proteins.

The expression of p65 with the channel alters significantly the rate of inactivation suggesting an interaction with the channel in the absence of the other components of the exocytotic complex. A direct p65 interaction with the channel is reflected by recombinant p65 binding to His6-N-loop p10–p100 fusion protein.

p65 interaction with the channel is manifested by reversal of the kinetics and current amplitude of a syntaxin associated N-type channel, further supporting a p65 and syntaxin crossstalk with the N-type channel. When syntaxin-induced inhibition of the channel has already been relaxed by SNAP-25, p65 further increases the amplitude of the current making it more than twice larger than the ‘free’ channel. A less prominent but apparently significant increase above ‘free channel’ level is observed even in the absence of SNAP-25. These facts may support an allosteric effect of p65 on the N-channel/syntaxin interaction, where the functional effect of syntaxin is reversed by p65 while the physical association is preserved. Hence, these results may predict the formation of a ternary complex of channel, p65 and syntaxin.

The calcium specific reversal of syntaxin induced inhibition of inward current and reduced rate of inactivation could be interpreted by the formation of a high affinity syntaxin/p65 complex [4,18,23] which does not bind to the channel. Furthermore, the Ca²⁺ specific p65 interaction with syntaxin [18,23] could explain the less efficient rescue of the syntaxin clamped channel by p65 when Ba²⁺ is substituted for Ca²⁺.

In addition, the fast component of neurotransmitter release in p65 knockout mice is strongly depressed [14] and cannot be stimulated by Sr²⁺ [15]. These results further support our proposed hypothesis that a distinct Ca²⁺ specific p65/syntaxin interaction restores the channel properties, and that the calcium sensitive N-loop interaction with p65 may be related to the fast component of regulated secretion. The likelihood of a syntaxin/p65/channel ternary complex formation was examined by in vitro binding of N-loop to p65(1–5). When both N-loop and free syntaxin are present, syntaxin binds to p65, while the distinct N-loop binding to p65(1–5) is lost (Tobi et al., unpublished results). Hence, in addition to targeting of the vesicle to the plasma membrane via a direct p65 interaction, p65 dissociates the N-channel from a syntaxin ‘grasp’, possibly by forming a p65/syntaxin complex. The liberated channel provides calcium ions leading to vesicle fusion with the cell membrane.

Acknowledgements: We thank M.K. Bennett, T.P. Snutch, A. Schwartz, R.H. Scheller and T.C. Südhof for the plasmids, and Dr. M. Takahashi for anti syntaxin antibodies.

References

4. Discussion

4.1. Functional interaction of N-type calcium channel with p65

Previously it was shown that purified α-conotoxin sensitive

