Allosteric Changes in Protein Structure Computed by a Simple Mechanical Model: Hemoglobin

Chunyan Xu, Dror Tobi and I. Bahar*

Center for Computational Biology and Bioinformatics and Department of Molecular Genetics and Biochemistry
School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA

Information on protein dynamics has been usually inferred from spectroscopic studies of parts of the proteins, or indirectly from the comparison of the conformations assumed in the presence of different substrates or ligands. While molecular simulations also provide information on protein dynamics, they usually suffer from incomplete sampling of conformational space, and become prohibitively expensive when exploring the collective dynamics of large macromolecular structures. Here, we explore the dynamics of a well-studied allosteric protein, hemoglobin (Hb), to show that a simple mechanical model based on Gaussian fluctuations of residues can efficiently predict the transition between the tense (T, unliganded) and relaxed (R or R2, O2 or CO-bound) forms of Hb. The passage from T into R2 is shown to be favored by the global mode of motion, which, in turn is driven by entropic effects. The major difference between the dynamics of the T and R2 forms is the loss of the hinge-bending role of α1-β2 (or α2-β1) interfacial residues at αPhe36-His45 and βThr87-Asn102 in the R2 form, which implies a decreased cooperativity in the higher affinity (R2) form of Hb, consistent with many experimental studies. The involvement of the proximal histidine βHis92 in this hinge region suggests that the allosteric propagation of the local structural changes (induced upon O2 binding) into global ones occur via hinge regions. This is the first demonstration that there is an intrinsic tendency of Hb to undergo T → R2 transition, induced by purely elastic forces of entropic origin that are uniquely defined for the particular contact topology of the T form.

Keywords: hemoglobin; Gaussian network model; anisotropic network model; allostery

Introduction

Studies on hemoglobin (Hb), the oxygen carrier protein in red blood cells, have contributed significantly to our understanding of the molecular mechanism of allostery in general, and Hb continues to serve as a model for understanding the role of intramolecular interactions in functional cooperativity. Human normal adult hemoglobin (HbA) is composed of four subunits having similar three-dimensional (3D) structures, two identical α-chains of 141 amino acid residues each referred to as α1 and α2 subunits, and two identical β-chains, β1 and β2, of 146 amino acid residues each. Each subunit has a heme-binding pocket that binds oxygen (Figure 1(a)). The oxygenation process of Hb is cooperative, i.e. binding of a first O2 molecule enhances O2 binding affinity, as evidenced by the decrease in free energy penalty observed with successive O2 bound. This increased affinity underlies the uptake/release of O2 over a relatively narrow range of pressure in the lungs/tissues.

There are two classical models proposed for describing the allosteric mechanism of Hb: the Monod, Wyman and Changeux (MWC) concerted

Abbreviations used: RMSD, root-mean-square deviation; GNM, Gaussian network model; ANM, anisotropic network model; NMA, normal mode analysis; EN, elastic network; HbA, adult hemoglobin; MWC, Monod, Wyman and Changeux; KNE, Koshland, Nemethy and Filmer; MD, molecular dynamics. E-mail address of the corresponding author: bahar@pitt.edu
The concerted mechanism of transition was the model, and the Koshland, Nemethy and Filmer (KNF) sequential model. The MWC model assumes that the low-affinity (tense, T) and high-affinity (relaxed, R) forms of the tetramers co-exist and can both bind O₂. In the absence of O₂, the T form dominates the ensemble of conformers. Upon O₂ binding, on the other hand, the R form is stabilized, and a shift in the dominant population from T to R is induced. All four molecules in a given tetramer have the same conformation at any time, i.e., there is a concerted (all-or-none) change between the T and R forms in all four subunits. This model was later supported by the oxo and deoxy-structures of Hb determined by Perutz. The concerted mechanism of transition was the rotation of the α₁β₂ dimer (subunits colored green and orange in Figure 1(a)) by a torsional angle of 15° relative to the α₁β₁ dimer about an axis that crosses the α₁ and α₂ (cyan and green) subunits.

The KNF model, on the other hand, allows for the co-existence of two different forms, R and T, in a given tetramer. Accordingly, each subunit can individually undergo a change from T to R form upon ligand binding, and the affinity of the neighboring subunits is changed through interactions at the subunit interfaces. Both the MWC and KNF models can fit the sigmoidal O₂ binding curves by suitable choice of parameters, and in particular the MWC model seems to be supported by spectroscopic, thermodynamic and kinetics studies.

Yet, on a broader perspective, these classical models can be viewed as two extreme cases of a more complex scheme that involves a combination of these simplified schemes. In particular, an intradimer (tertiary) cooperativity (within α₁β₁ or α₂β₂) (symmetry rule model) has been inferred, in addition to the interdimer (quaternary) cooperativity, from the free energy database compiled for Hb tetramers with hemesite analogs, supported by recent experiments. The role of the interactions at the α₁β₁ or α₂β₂ subunit interface(s) and their coupling to those at the α₁β₂ or α₂β₁ interface(s) are still being explored (see e.g. Chang et al.).

A third Hb conformation, designated as R2, has been observed in the carbon monoxy (CO)-bound form at pH 5.8. This conformation is closer to the oxygated state of Hb because the original R structure is formed under a high salt condition. R shows intermediate characteristics between T and R2. Understanding the molecular mechanisms or intersubunit interactions underlying the transition between the two most distinctive forms, T and R2, is the task presently undertaken.

Our knowledge of structure–function relations of Hb is by and large provided by structural and spectroscopic studies. Efforts for understanding the mechanism of $T \rightarrow R$ transition have usually focused on the comparison of the available polymorphic structures of the multitimer. While these studies help in visualizing the types of domain movements, they have limitations: (i) they require two or more structures for comparison; (ii) they are not predictive but simply compare already known structures; and (iii) the inferred mechanisms depend on the observed structures, which do not necessarily represent a complete or unbiased set, except for a few thoroughly studied cases (e.g. the study of HIV-1 protease flexibility by Karplus and co-workers).

Molecular dynamics (MD) simulations can usually provide a more complete description of conformational motions. Yet, the MD simulations of Hb have generally been limited to its monomers or substructures due to the large size (574 residues or ~64.5 kDa) of the tetramer, except for a few recent studies. Apart from the large size of the protein, it is also a challenge to sample the transition state in traditional MD simulations. A remarkable study in this respect is the recent MD simulations of $T \rightarrow R$ transition by Mouawad et al., which explores the transition by the “Path Exploration with Distance Constraints” technique introduced by Guilbert and co-workers. In this technique the MD trajectory is not free to explore the most probable pathways, but instead it explores a subset of pathways that fulfill the constraints. The initial and final conformations are

Figure 1. (a) Ribbon diagram of the Hb tetramer. The four monomers α₁, α₂, β₁, and β₂ are shown in cyan, green, red and orange, respectively, and the four heme groups are explicitly displayed in magenta. The RCSB PDB entry 1a3n (unliganded Hb) is used in this Figure. (b) The α₁ and β₂ subunits, and the secondary structural elements that will be shown to be reconfigured during the T → R transition are displayed. The proximal αHis87, helix F (81–89) and helix G (95–112) are shown in blue, red and green, respectively, for α₁. The helix C (36–41) is shown in orange for the β₂ subunit.
...dynamics and function. Two computational studies provide evidence for the close link between imposed. Similarly, Zaloj & Elber used the sto...
region at the $\alpha_1-\beta_2$ and $\alpha_2-\beta_1$ interfaces (Figure 1(b)) upon ligand-binding; (iii) analysis of the second slowest mode which draws attention to domain movements coordinated the $\alpha_1-\beta_3$ and $\alpha_2-\beta_2$ interfacial interactions; and (iv) demonstration that the transition T \rightarrow R2 is induced by the global mode of motion, and may be viewed as a reconfiguration facilitated by entropic effects and stabilized by specific interactions redistributed after global reconfiguration. Therefore, the “tense” form has an entropic tendency to assume the “relaxed” form. The opposite transition, R2 \rightarrow T, on the other hand, cannot be explained by purely elastic forces but necessitates energetic contributions.

Agreement between theoretically predicted and experimental B-factors

The RCSB Protein Data Bank (PDB)31 entries 1a3n (T), 1hho(R) and 1bbb(R2)32,33 were used in the present computations. The X-ray crystallographic temperature factors, also called Debye–Waller factors or B-factors (B_i), are compared with the GNM-predicted mean-square (ms) fluctuations (ΔR_{ij}) of residues 1 $\leq i, j \leq N$ in the tetramer (N = 574) in Figure 2. The theoretical B-factors are found by inserting the GNM-predicted ms fluctuations in the equality $B_i = 8\pi^2(\Delta R_{ij})^2/3$ (see Materials and Methods for details). The Figure illustrates the result for one of the β-dimers in the T form, the results for the other dimer being almost indistinguishable. The serial indices 1–141 and 142–287 along the abscissa (here and in the other Figures) correspond to the respective α and β-chains. We see that the α-subunit fluctuations profile is very similar to that of the β-subunit. The close agreement between theoretical results and X-ray crystallographic temperature factors lends support to the utility and applicability of the GNM as an approximate but physically meaningful model.

The GNM spring constant γ for the harmonic potentials between near neighboring (interacting) residues is taken here as 0.88 kcal/(mol A2) (for the T form) to match the absolute size of experimental factors. This parameter rescales the absolute size of the ms fluctuations in general, but the distribution (or relative magnitudes) of the fluctuations among residues remains unaffected and uniquely defined for a given architecture. The value of the spring constant is coupled to the choice of the cutoff distance r_c for defining the “connected” residues of the network. A cutoff distance of 7.0 A is usually adopted in GNM studies, consistent with the first coordination shell radius of amino acids deduced from the knowledge-based examination of PDB structures at the coarse-grained level of single site (α-carbon) per residue.34 These values are in accord with the results from the GNM analysis of 113 high resolution crystal structures by Phillips and co-workers55 where the best correlation between theory and experiments indicated an optimal value of $k_BT/\gamma = 0.87(\pm0.46)$ A2 with $r_c = 7.3$ A. In the ANM approach, on the other hand, detailed examination of the effective ranges of interactions as a function of the strength of interactions indicated a cutoff distance of 12–15 A2 for maintaining the same spring constant, and we used a cutoff distance of 13 A in ANM computations.

Intrasubunit and intersubunit couplings

The cross-correlation function $C_{ij} = \langle \Delta R_{ij} \Delta R_{jk} \rangle / \langle (\Delta R_{ij})^2 \rangle^{1/2}$ measures how/if the...
movement of a given residue i correlates with that of residue j. C_{ij} varies between -1 and 1. It is close to 1 when the two residues are highly correlated, i.e. they concordantly move in the same direction in space. C_{ij} approaches -1, when the two residues are anti-correlated, i.e. they are coupled but move in opposite directions. C_{ij} tends to be zero when the two residues are uncorrelated. In this latter case they either do not move at all, or their motions are perpendicular to each other. Cross-correlations are conveniently displayed by correlation maps, the axes of which are the residue serial numbers.

The correlation map for the T form is shown in Figure 3 (see the color code in the legend). Similar maps were found for the forms T, R and R2. Residues within each subunit are found to be highly (auto)correlated, as evidenced by the square blocks along the diagonal. In other words, each of the individual subunits α_1, α_2, β_1 and β_2 undergo coherent, almost rigid-body movements en bloc. In addition to intrasubunit couplings, we observe distinctive intersubunit couplings between α_1 and β_1, and between α_2 and β_2 subunits. This indicates that there is a hierarchical coupling, firstly within monomers, and secondly within the dimers $\alpha_1\beta_1$ and $\alpha_2\beta_2$, consistent with the view of the tetramer as a dimer of cooperative $\alpha\beta$ dimers.9 The regions encircled by the red ellipses indicate the correlated pairs (α_2, 27–37 and β_1, 115–132), and (α_1, 100–117 and β_1, 107–127) that establish the coupling between the monomers that form the dimer $\alpha_1\beta_2$. We note that β131Gln, recently shown by site-directed mutations to play an important role in coordinating the communication between the $\alpha_1\beta_1$ and $\alpha_2\beta_2$ interfaces,10 belongs to this group of residues. On the other hand, subunits α_1 and α_2 are anti-correlated ($C_{ij} < 0$), as well as subunits β_1 and β_2. The anti-correlated motions of these subunits are consistent with the counter-rotations of the $\alpha_1\beta_2$ dimer and $\alpha_2\beta_1$ dimer, which will be shown below to be the dominant global mode of motion of the tetramer.

The global motion is coordinated by a hinge site at the α_1–β_2 (or α_2–β_1) interface

Physical significance of the slowest (global) mode

This mode of motion involves the overall molecule, and this high cooperativity is usually relevant to function. It is the mode surviving (or dominating) at relatively long times, although it is likely to be influenced by friction and random force collisions with the solvent. The peaks in the slowest mode shape indicate the regions that enjoy the highest conformational flexibility when viewed from a relatively long time-window, whereas minima represent the hinge centers in these global modes. There is rotational flexibility at the hinge centers, but no translational mobility, hence their low ms fluctuations in the global mode.

Global dynamics of the T form

The two α-chains exhibit similar dynamics, as well as the two β-chains. We show the representative slow mode shape for one of the α and β-subunits in Figure 4(a). Three minima regions are distinguished in each case, at residues 33, 36–45, 85–94, and 138–141 in α-chains, and 35–43, 87–102, and 142–146 for β-chains. These are the global hinge-bending sites of the tetramer. Examination of the tetramer structure shows that these residues are all located at the α_1–β_2 (or α_2–β_1) interface (Figure 4(b)). The cross-correlations in the global mode (not shown) further show that subunits α_1 and β_1 move along the same principal direction; and subunits α_2 and β_2 undergo concerted, opposite direction, motions with respect to the dimer $\alpha_1\beta_1$. All these observations are consistent with the en bloc motion of the dimer $\alpha_1\beta_1$, relative to $\alpha_2\beta_2$ coordinated by the hinges (minima in the global mode shape) at the α_1–β_2 and β_1–α_2 interfaces; the particular mechanism of this motion, a global torsion, will be analyzed further below. We note that βTrp37 was recently shown by Ho and co-workers to be engaged in a slow conformational exchange in the CO-bound form of Hb in the presence of IHP, while βTrp14 and βTrp15 were not,56 which is consistent with the participation of
Trp37 (and not βTrp14 and βTrp15) in the global hinge site at the α1–β2 interface.

Comparison of the dynamics of the T and R2 forms

The most drastic difference between the global mode shapes of the two forms is the change in the mobility of the R2 residues αPhe36–His45 and βThr87–Asn102 (Figure 4(a)). Interestingly, these segments precisely include the so-called switch region at the α1–β2 interface (Figure 4(b)). The first mode of the tetramer thus directly interferes with the hinge-bending role of the switch regions at the α1–β2 and α2–β1 interfaces. Another difference lies in the N termini of the α-chains that are flexible in T and restricted in the R2 form. We are not yet sure of the functional implication of this difference in mobility at this region. Calculations repeated for the R form (not shown) confirmed the intermediate behavior of R between the T and R2 forms.

Allosteric changes mediated by the hinge region and the implication of the distinctive dynamics of the switch residues in the two forms

How does O2 binding to a given subunit enhance the O2 affinity of the other subunits in the same tetramer? Direct heme–heme interactions are out of the question because of the physical distance between them. Therefore the oxygen-binding signal at the heme pocket must propagate through the α–β interface to affect the binding affinity of the neighboring subunits. The present study draws attention to two stretches of residues, α36–45 and β87–102, at the α1–β2 and α2–β1 interfaces. These undergo a strongly cooperative change in dynamics from highly constrained (T form) to a flexible (or loose) (R2 form) behavior. The fact that β87–102, which is being affected directly upon O2 binding, assumes a hinge role in the global dynamics suggest that local structural changes propagate into a global ones via hinge regions. Furthermore the fact that these residues lose their hinge role in the R state allows for efficient obstruction of the large-scale propagation of motions across subunits α1 and β2 (or α2 and β1) and explains the reduced cooperativity of the R form.

The presently observed decrease in communication efficiency and range (due to the loss of hinge function of residues at the α β interface), or reduced cooperativity, is a feature of the higher affinity (R) form of Hb emphasized in several experimental studies. It is well known that in the deoxy-Hb, the heme porphyrins are domed such
that the iron is displaced out of the heme plane towards the proximal histidine residues (α87 or β92) at the eighth position of helix F (F8). Upon oxygenation, the iron moves into the heme plane, dragging the F helix that moves laterally ~1 Å across the heme. These changes propagate to the FG segment and to the neighboring subunit C-helix, and break several hydrogen bonds and salt bridges in the α1β2 and α2β1 interfaces (Figure 1(b)). Our analysis indicates that among the proximal histidine residues, those on the α-chain (βHis87) assume a critical hinge role rather than those on the α-chains (αHis87), which is consistent with the observation that the rHb (BH92G) cannot retain the T-form with distal ligand bound, while rHb (αH87G) does.

Using genetically engineered mutants, Ho and colleagues have shed light on intersubunit hydrogen bonds that impart cooperativity and allostery in HbA. The interactions in which βAsp99 is engaged emerge as important determinants of the stability of the T form. For example, the mutant αV96W in the R form converts to the deoxy-ferrous structure (T) upon addition of an allosteric effector, inositol hexaphosphate, which forms a hydrogen bond between αTrp96 and βAsp99 at the α1β2 interface. Likewise, the mutation βD99N shows greatly reduced cooperativity and increased oxygen affinity, due to the disruption of the hydrogen bonds between hydrogen bonds βAsp99 and αTyr42 at the subunit interface. The double mutant (βD99N and αY42D), on the other hand, restores the allosteric effect lost in the β99N mutant, because the second (compensatory) mutation αY42D restores the hydrogen bonds between the subunit interfaces. These observations are consistent with the presently revealed critical role of residues α36–45 and β87–102.

Tetramer global dynamics controlled by α1β2 dimer dynamics

In the T form, the dynamics of the α and β-subunits exhibit common features (black curve in Figure 4(a)). In the R2 form, on the other hand, they differ (Figure 4(a), red curve) due to the relaxation of α36–45 and β87–102 at the α1β2 (or α2β1) interface. The change in dynamics at this particular interaction site seems to control the quaternary structure dynamics. Rivetti and co-workers showed that the binding curve was non-cooperative for a single Hb crystal that remained in the T conformation upon oxygen binding. Deoxyhemoglobin encapsulated in silica gel, trapped in the T form, was also observed to bind oxygen non-cooperatively. Heme binding module substitution experiments also indicate that the heme binding structure of tetrameric Hb is closely coupled to subunit interactions. These observations raise the question: to what extent do the interactions at the α1β2 (or β2–α1) interface control the dynamics of the tetramer?

To address this issue, we repeated the GNM analysis for individual α and β subunits, and for the dimers α1β2 and α1β3 (or α2β2 and α2β3). The dynamics of subunits were found to be almost indistinguishable when examined as individual subunits. The dimer α1β2 (Figure 5(a)), considered separately, also yielded almost indistinguishable features for the α and β-subunits’ global modes. The distinctive dynamics of the α and β-subunits in the tetramer R2 form could be captured only when the α1β2 (or α1β3) dimer was considered (compare Figure 5(b) and (c)). This confirms that the interaction between α1 and β2 is the major determinant of the dynamics of the tetramer, and implies that cooperative oxygen binding is conveyed by α1–β2 (and α2–β3) interaction(s).

The second slowest mode

Significance

While the first GNM mode usually defines the most cooperative and functional conformational changes, the second mode can play a complementary role in some cases and it may be of interest to examine the associated motion as another cooperative mechanism inherently favored by the tetrameric architecture. The contribution of the second mode to the dynamics of Hb is found to be weaker than that of the first mode’s by a factor of 2 (the ratio of the corresponding eigenvalues). Yet, it is interesting to find that this mode controls the relative movements of the dimers α1β2 and α1β3 in the T form, and α2α3 and β2β3 in the R2 form, in contrast to mode 1, where the dimer α1β3 motion relative to α1β2 was controlled. Figure 4(c) displays the fluctuation behavior of the α and β-subunits in this mode, and Figure 4(d) illustrates the regions (residues α9, 30–31, 34–35, 104–127 and β3, 33–34, 110–132 for T (not shown); α31, 34–35, 105–123 and β30–40, 51, 110–128 for R2) emerging as the hinge-bending centers (minima in part c) in this mode. These are all located at the α1–β1 (or α2–β2) interface.

The role of α1–β1 interface in Hb allosterism is still a matter of debate. Ho and colleagues showed that the mutation of β31Gln in the α1–β1 interface can affect the reactivity of the SH group of β93Cys (located at the α1–β1 interface) toward p-mercuribenzoate. This result indicates the communication between the α1β3 and αβ2-subunit interfaces. Ackers measured the free energy of dissociation of the tetramer to αβ dimers for all possible ligation states and found they agreed mostly with the predictions of the MWC model except those for a small intradimer cooperativity. Further experiments by Ackers and co-workers support a Symmetry Rule model of allosteric regulation.

In order to assess the most critical interactions and their functional implications at the α1–β1 interface, we ranked the hydrogen bonds at the α1–β1 (or α2–β2) interface on the basis of their flexibility in the GNM mode 2. The hydrogen bond formed between αPro114 O and βHis116 NE2 is found to
be the most constrained, which implies that this bond is highly stable for both the T and R2 forms. Other pairs of residues subject to stable interactions are αPhe117-βArg30, αArg31-βPhe122, αArg31-βGln127, αHis103-βGln131, αHis122-βArg30 and αAsp126-βTyr35.

T − R2 transition is driven by the most coordinated (global) motion of Hb

The following approach is used to characterize the global structural changes favored by elastic modes. We start with the T form. Using ANM, we find the displacements (or deformations) driven by the slowest mode of motion, designated as \(\Delta R_{1} \).

\[
\Delta R_{1} = \alpha \Delta R_{1}^{\text{new}}
\]

where \(\alpha \) is a scalar that determines the size of the displacement. Two sets of position vectors are obtained from this analysis, which refer to positive and negative \(\alpha \) values. The corresponding reconfigured T forms, shortly designated as \(T^+ (\alpha) \) and \(T^- (\alpha) \), are minimized using the package of programs MOIL with a tolerance of 0.2 kcal/mol. The root-mean-square deviation (RMSD) between each energy-minimized conformation and the two stable forms T and R2 are examined. The two sets of conformations, \(T^+ (\alpha) \) and \(T^- (\alpha) \), are equally distant from the original equilibrium state (T), the departure increases with increasing \(\alpha \), as expected. On the other hand, comparison with the R2 form reveals that one of the reconfigured T forms, \(T^+ (\alpha) \), gradually approaches the R2 state as \(\alpha \) increases (while the other, \(T^- (\alpha) \), moves farther away) (Figure 6, open circles). Thus, the purely elastic (or entropic) forces initiate deformations that are potentially conducive to the R2 state.

![Figure 5](image-url)

Figure 5. Comparison of the first principal mode of R2 tetramer (c) to that of αβ (a) and αβ (b) dimers. The coordinates for the R2 tetramer, the αβ dimer or αβ dimer of R2 are used to calculate the square fluctuation driven by the slowest mode. We can see that in the αβ dimer, the α-subunit dynamics is similar to the β-subunit dynamics while in the αβ dimer, the α-subunit dynamics is very different from the β-subunit dynamics, and the profiles αβ dimer and R tetramer are very similar, indicating that the global mode shape of the tetramer is predominantly controlled by that of the αβ (or αβ) dimer.

![Figure 6](image-url)

Figure 6. Comparison of the deformed structures generated by ANM with the different forms of Hb. The open circles describe the RMSD value (Å) between the R2 form and the deformed structures (\(T^+ (\alpha) \), right) and (\(T^- (\alpha) \), left) obtained for the T form by varying the parameter \(\alpha \) that scales the extent of departure from the original state as induced by mode 1 (see equation (15)). The filled circles refer to the RMSD values between the T form and reconfigured R2 forms (\(R_2^\alpha \) and \(R_2^\beta \)). We note that \(T^+ \) gradually approaches the R2 form (RMSD value of 2.41 Å reached at \(\alpha = 54 \)), while the reconfigured R2 form does not approach the T form. The RMSD values are calculated in each case by energy minimizing (with MOIL) the ANM-predicted coarse-grained deformed conformations.

![Figure 7](image-url)

Figure 7. Comparison of the T (top) and R2 (middle) forms, with the more favorable reconfigured T form (\(T^\alpha \), bottom) that we computed. The spatial orientations and conformations of the α1β1 subunits (colored gray) are almost identical in the...
three cases. Their RMSD values after pairwise optimal superimposition yields <1.2 Å RMSD for all pairs. The top portions of the diagrams show the αβ₂ subunits in blue (T), pink (R₂) or orange (reconfigured T). The heme groups are red and magenta in the upper two diagrams. Comparison of the upper two diagrams permits us to visualize the structural difference between the T and R₂ forms: a counterclockwise rotation of the α₁β₂ unit in the R₂ form about the out-of-plane axis (by >15°) relative to its orientation in the T form. This torsional movement is facilitated by the weakening of a few severely constrained interactions at the α₁–β₂ and α₂–β₁ interfaces, which are predicted above, in agreement with the information deduced from experiments (see Figure 4(a) and (b)).

The striking feature in Figure 7 is the close similarity between the two lower diagrams, i.e. the R₂ and the reconfigured T forms. The RMSD values between these two structures is 2.32 Å. The present theory thus predicts that the R₂ form is a configuration that is directly stabilized by the global relaxation mode of the T form, i.e. the T form possesses an inherent potential derived from entropic effects for being reconfigured into the R₂ form.

In order to gain an atomic description of the reconfiguration path from the T state toward the R₂ state, the above-minimized reconfigured T forms were inspected. In the T state αThr₄₁ and βArg₄₀ do not form a close contact. The distance between the amine group of βArg₄₀ side-chain and the carbonyl backbone of αThr₄₁ is 5.65 Å. However, in the R₂ state the two amino acid residues approach and the distance becomes 3.76 Å. We were able to depict this motion by observing the intermediate forms of reconfigured T state. A further analysis shows that in the minimized T state the above distance is 4.24 Å; upon reconfiguration of the T state the two amino acid residues approach and the distance becomes 2.8 Å (see Figure 8(a)). Another example for the change in close interactions at the α₁β₂ interface is the triad βTrp₃₇, βAsn₁₀₂ and αAsp₉₄. In the T state, βTrp₃₇ forms a hydrogen bond between the NH group of its indole ring and the side-chain carboxyl group of αAsp₉₄. βAsn₁₀₂ does not form close contacts with these two amino acid residues. The distance between the βAsn₁₀₂ side-chain carboxyl group and the βTrp₃₇ indole NH is 5.45 Å, and the distance between the βAsn₁₀₂ side-chain amine and the αAsp₉₄ side-chain carboxyl is 5.55 Å. In the R₂ state βAsn₁₀₂ approaches βTrp₃₇ and αAsp₉₄ and the above distances become 2.98 Å and 2.77 Å, respectively. The hydrogen bond between βTrp₃₇ and αAsp₉₄ is broken and the two amino acid residues move apart. Upon reconfiguration of the T state the distance between the βAsn₁₀₂ carboxyl group and the βTrp₃₇ indole NH shorten from 4.54 Å to 4.1 Å, and the distance between the βAsn₁₀₂ side-chain amine and the αAsp₉₄ side-chain carboxyl group shorten from 5.56 Å to 3.34 Å. Figure 8(b) shows how in the intermediate states of reconfigured T form βAsn₁₀₂ approach βTrp₃₇ and αAsp₉₄ to form close contacts. These switches between interacting amino acid pairs are consistent with previous studies of Ho and co-workers.

As a final test, we repeated the same analysis by
taking the R2 form as the starting configuration and generating the deformed conformations R\(^\ast\) (\(\alpha\)) and R\(^\ast\) (\(\alpha\)). The results from this analysis are presented in Figure 6 (filled circles). A weak tendency to approach the T form is discernible in R\(^\ast\) (\(\alpha\)) at around \(\alpha = -21\), although further conformational change in the same direction does not progress towards the T form, but leaves almost unchanged the original RMSD value. Thus, in contrast to the T → R2 transition, the backward passage R2 → T does not appear to be a global change favored by purely entropic effects. This behavior can be rationalized by the fact that entropic effects might favor transitions in the direction of increasing disorder (or weakening internal interactions), as is the case for T → R2. The opposite change, on the other hand, is accompanied by an enhancement in cooperativity manifested by the constraints at the hinge sites (Figure 2), which cannot be favored by entropic effects, but by specific interactions that stabilize particular contacts.

It is worth noting that the dynamics of the tetramer results from the superposition of several modes, and other modes can also contribute to the transition between the two forms, in the order of decreasing importance as we consider higher frequency modes. As described above, the second slowest mode drives a cooperative motion that is totally different from the first mode. However, some of the higher frequency modes were observed to induce fluctuations similar to those of the first slowest mode. While the statistical contribution of these modes is much smaller, this observation invites attention to the occurrence of multiple pathways for the transition between T and R forms, as also pointed out in a classical NMA performed by Mouawad & Perahia for Hb tetramer.66 Interestingly this study also showed the presence of a set of preferential modes that brings the T form close to the R form, while the opposite passage could not be observed, i.e. normal modes followed by energy minimization starting from the R state, did not allow the structure to assume a conformation significantly different from the R form. The R form was then concluded to be trapped in a deep and narrow potential energy minimum.

Based on free energy calculations, Eaton and co-workers\(^65\) found that the T → R transition state is closer to the R state than the T state. Another interesting docking experiment was performed by Janin & Wodak.53 A reaction pathway between the T and R forms was constructed by requiring the intermediate conformations to retain the largest buried surface area between the \(\alpha\)β and \(\alpha\)β\(_2\) dimers. The passage from the T state to the R state was found to comply with this requirement, i.e. the T state \(\alpha\)β dimers can rotate to a near R state while maintaining much of the buried surface area originally present in the T state. The opposite passage, on the other hand, from R to T state could not be achieved due to significant loss in the buried surface area. This suggests a reaction pathway in which the \(\alpha\)β dimer in the T state rotates to a near R state intermediate in which the \(\alpha\)β dimers undergo a tertiary conformational rearrangement towards the R state. Our results agree qualitatively with the above studies. Notably, unlike the above NMA study, the present results are found without including any specific, atomic energy functions or parameters, but simply taking rigorous account of contact topology in the native state, demonstrating the dominant role of contact topology (or associated entropic effects) in determining the functional transition from T to R2 form.

Time-scale of the observed process

Gibson found that after photodissociation, carbon monoxide rebinds much faster than the initial rate of deoxyhemoglobin and carbon monoxide binding.66 This suggested that this “fast-reacting” deoxyhemoglobin has a different affinity and possibly a different structure. Later Hopfield and colleagues found that the fast-reacting hemoglobin is the Hb that has not switched from R to T structure after photodissociation.69 By nanosecond-resolved spectroscopy, Hofrichter and co-workers showed that the quaternary structure controls the overall rate of CO dissociation,70 and these quaternary changes are seen at the scale of tens of microseconds.71 The time-scale of the present global mode is in the sub-nanoseconds regime (0.62 cm\(^{-1}\)) as
estimated from the approximation $\omega = (\gamma \lambda_1/m)^{1/2}$ where λ_1 is the first mode eigenvalue (0.0545) and m is the Hb mass (64.5 kDa). This time-scale is comparable to that of the low frequency mode of aspartate transcarbamylase (0.52 cm$^{-1}$) obtained by NMA,72,6 and differs from the one calculated by NMA73 by a factor of three, approximately. Time-resolved resonance Raman and circular dichroism measurements indicate that the transition of Hb might occur in several steps, which is confirmed by time-resolved UV magnetic circular dichroism with βTrp37-α94Asp as marker.74 Ho and co-workers observed a conformational exchange on the micro- to millisecond time-scale by studying the dynamics of βTrp37 in NMR.25 Our calculations most likely refer to the initiation stage of the transition from the T state to a near R state intermediate, and indicate the mechanical tendency of the overall architecture to undergo this passage, rather than the completion of the transition. This tendency of the molecule is consistent with the studies of Janin & Wodak67 and Eaton and co-workers66 that suggest the occurrence of a transition state close to the R form.

Conclusion

Here, we demonstrate that a simple elastic network model, GNM/ANM, can predict the transition from the T form to the R2 form of Hb. Numerous mutational and spectroscopic studies have shown that the hydrogen bond and salt bridge formation at the $\alpha_1\beta_2$ interface are key to the allosteric activity of Hb. Without knowledge of any chemical and biological data on Hb function, using structural (purely geometric) information alone, we show that the hinge center for the most coordinated motion of Hb corresponds to the switch region at the $\alpha_1\beta_2$ interface. Numerous liganded and unliganded Hb revealed a number of structures that fall in between T and R2 states. Our studies tie the global motion of Hb directly to this functional conformational transition. Additionally, we identify a number of other interactions at the $\alpha_1\beta_1$ interface, which can play a role in establishing the communication of the dimers.

How is it possible to predict conformational transitions with a simple, non-specific, linear model? Previous applications have shown that the global mode of proteins is insensitive to the details of structure; and the collective domain movements, hinge sites for these movements can be predicted without necessitating detailed knowledge of atomic structure and energy parameters. Yet, one would expect the movements predicted by EN models to occur in the close neighborhood of the original equilibrium state, i.e. these should be fluctuations within the same global energy minimum. In a recent comparison with MD simulations,38 we observed that the motions that involve a passage over an energy barrier can be approximated by the ANM, provided that these occur in the close neighborhood of the native state. The coarse-grained description adopted in the ANM smoothes out the energy surface and allows for sampling nearby configurations that are otherwise separated by local energy barriers. The prediction of the T → R2 transition of Hb by this model also invites attention to the validity of this conjecture.

An important implication of the present analysis is that purely mechanical, or in the thermodynamics sense, purely entropic, effects play a significant role in inducing the T → R2 transition. The picture that emerges is that in the presence of a perturbation, or a destabilizing effect such as ligand binding, the most probable conformation to be visited by the T form is the R form, the passage being favored by entropic effects; and the reconfigured form is then stabilized by a redistribution of interresidue interactions (hydrogen bonds, salt bridges, etc.) at the α_1−β_2 (and α_2−β_1) interface(s). This is the first demonstration that entropic effects significantly contribute to directing the functional transition of Hb.

One may conceive that the methodology can be extended to even larger structural rearrangements of multimeric complexes or assemblies by further coarse-graining the structure. This can be an extremely efficient way of estimating cooperative structural changes, because GNM takes a few seconds, ANM takes about two hours of computing time on a SGI workstation with R12000 processor for predicting the size (GNM) and mechanism (ANM) of the most cooperative motions intrinsically favored by a given architecture of the size of Hb tetramer. It is sufficient to have one known structure, even at low resolution (of the order of electron microscopy images) for predicting the most likely cooperative movements. The next challenging application could be, for example, to be able to predict the EM image of a GroEL−GroES complex in the R form determined by Saibil and co-workers25 starting from the well-known complex in the T form.76

Materials and Methods

GNM

In the GNM the structure is viewed as an EN. Each node is identified by a single residue (in our case Cα atom), and pairs of residues located within a cutoff distance, r_c, are assumed to be connected by elastic springs. The heme is modeled by taking a representative set of atoms that retain the same level of resolution as the protein (approximately 3.8 Å separation between adjacent atoms), using the atomic coordinates of the hemes in the PDB-deposited structures. Calculations are verified to be insensitive to the inclusion/exclusion of small molecules (like O₂ or CO). The difference in the dynamics of the ligand-bound forms essentially results from the distortion in the atomic coordinates of the tetramer; rather than the explicit inclusion of these small molecules. A uniform spring constant γ is adopted for all pairs. The dynamics of the network is fully defined by the topology.
of interresidue contacts, or the Kirchhoff matrix Γ, also called connectivity or adjacency matrix in graph theory.27,28 For a network of N interacting sites, the elements of Γ are defined as:

\[
\Gamma_{ij} = \begin{cases}
-1 & \text{if } i \neq j \text{ and } R_{ij} \leq r_c \\
0 & \text{if } i \neq j \text{ and } R_{ij} > r_c \\
-\sum_{i \neq j} \delta_{ij} & \text{if } i = j
\end{cases}
\]

(1)

where R_{ij} is the distance between sites i and j (given by X-ray crystallography, NMR or EM). A cutoff distance of 7 Å is adopted in GNM calculation. Γ conveys the same type of information as conventional contact maps. Its non-zero off-diagonal terms indicate the interacting pairs, and its ith diagonal term is equal to the coordination number of the ith site. The probability distribution in ΔR_i and the associated free energy of entropic origin are given by:

\[
W(\Delta R_i) = \exp[-3(\Delta R_i)^2/(2(\langle \Delta R_i^2 \rangle))]
\]

\[
\Delta G_i = -T\Delta S_i = k_B T \ln W(\Delta R_i)
\]

where k_B is the Boltzmann constant, T is the absolute temperature and $\langle \Delta R_i^2 \rangle$ is the ms fluctuation of residue i. The correlations $\langle \Delta R_i \Delta R_j \rangle$ between the ΔR_i and ΔR_j are found from the statistical mechanical average:29

\[
\langle \Delta R_i \Delta R_j \rangle = (1/Z_N) \left\{ (\Delta R_i \Delta R_j) e^{-V/k_B T} d[\Delta R] \right\}
\]

\[
= (3k_B T/\gamma)(\Gamma^{-1})_{ij}
\]

(3)

where $[\Gamma^{-1}]_{ij}$ denotes the ijth element of the inverse of Γ, γ is the 3N-dimensional column vector $\{\Delta R_1, \Delta R_2, \ldots, \Delta R_N\}$ of the fluctuations of all nodes, and Z_N is the configurational partition function:

\[
Z_N = \int \exp\left(\frac{-V}{2k_B T}\right) d[\Delta R]
\]

The cross-correlations in Figure 3 are found from:

\[
C_{ij} = \langle \Delta R_i \Delta R_j \rangle / |\langle \Delta R_i^2 \rangle|^{1/2} \langle \Delta R_j^2 \rangle^{1/2}
\]

\[
= |\Gamma^{-1})_{ij}|/|\Gamma^{-1})_{ii}|^{1/2}
\]

(5)

The potential energy V in equation (3) may be written as:

\[
V = (\gamma/2)|\Delta R_i^2| \Gamma |\Delta R|
\]

\[
= (\gamma/2) \sum_i \sum_j h(r_c - R_{ij}) |\Delta R_i - \Delta R_j|^2
\]

(6)

where the superscript T denotes the transpose, the summations are performed over all interaction sites, $h(x)$ is the heavyside step function equal to 1 if $x \geq 0$, and zero otherwise, thus sorting all sites located closer than the cutoff distance r_c. The ms fluctuations of residues and corresponding X-ray crystallographic B-factors $B_i = 8\pi^2 \langle \Delta R_i^2 \rangle / 3$ are found using equation (3) with $i = j$, i.e.:

\[
\langle \Delta R_i^2 \rangle = (3k_B T/\gamma)(\Gamma^{-1})_{ii}B_i = 8\pi^2 (k_B T/\gamma)(\Gamma^{-1})_{ii}
\]

(7)

Equation (7) provides an extremely efficient way of estimating the ms fluctuations of individual residues. We determine $[\Gamma^{-1}]$ by eigenvalue transformation of Γ (see below) and reconstruction of Γ^{-1} after removal of the zero eigenvalue. The GNM software is accessible on the internet†.

Finally we note that the theory yields a unique solution for the distribution of fluctuations for each particular architecture. However, the absolute sizes of fluctuations depend on the spring constant γ. We usually adjust γ to match the average B-factor (over all residues) from experiments. γ is thus found to be 0.88 kcal/ (mol Å2) using $r_c = 7.0$ Å. ANM calculations necessitate the adoption of a larger cutoff distance in order to maintain the same spring constant and to ensure the occurrence of no more than six zero eigenvalues. We used the cutoff distance of 13 Å in ANM calculations, consistent with our previous examination30 of the change in γ with r_c. The ANM results were verified to be almost insensitive to the choice of r_c provided that $r_c > 10$ Å.

Mode analysis (MA)

A major advantage of the GNM is the possibility of determining the global modes of a quaternary structure with a minimal computational cost. To this aim, the first step is the eigenvalue decomposition of Γ as:

\[
\Gamma = U\Lambda U^{-1}
\]

where U is the orthogonal matrix whose columns u_i, $1 \leq i \leq N$, are the eigenvectors of Γ, and Λ is the diagonal matrix of the eigenvalues (λ_i). The eigenvalues represent the frequencies of the $N-1$ non-zero GNM modes, usually organized in ascending order, i.e. $\lambda_1 \leq \lambda_2 \leq \lambda_{N-1}$, and $\lambda_N = 0$. The ith element (u_{ij}) of the ith eigenvector describes the motion of residue i along the ith principal coordinate. The ms fluctuations of residues can be rewritten as a weighted sum over all modes as:

\[
\langle \Delta R_i^2 \rangle = \sum_k (\langle \Delta R_i^2 \rangle)_k = \sum_k (3k_B T/\gamma)|\lambda_k^{-1}(u_{ik})|(u_{ik})
\]

(9)

and the contribution of the kth mode as:

\[
\langle \Delta R_i^2 \rangle_k = (3k_B T/\gamma)|\lambda_k^{-1}(u_{ik})| u_{ik}^2
\]

(10)

The shape of the kth mode, obtained by plotting (u_{ik}) (u_{ik}) as a function of residue index i for $1 \leq i \leq N$, represents the distribution of residue mobilities in mode k. By definition this distribution is normalized, i.e. $\sum_i (u_{ik})^2 = 1$. λ_k^{-1} serves as a statistical weight for mode k. The slowest modes thus make the largest contribution to $\langle \Delta R_i^2 \rangle$.

ANM

The fluctuations estimated by the GNM are by definition isotropic, i.e. $\langle \Delta X_i^2 \rangle = \langle \Delta Y_i^2 \rangle = \langle \Delta Z_i^2 \rangle = \langle \Delta R_i^2 \rangle / 3$, and the system is described by $N-1$ internal modes, instead of $3N-6$, which provide information on the fluctuation sizes, only. No information on the fluctuation directions is provided. ANM addresses this deficiency.30 ANM is in spirit similar to GNM, no residue specificity or non-linear effects are present. The major difference is that the potential for each pair (i,j) of interacting residues is $[(\gamma/2)|\Delta R_i| - |\Delta R_j|]$ in the ANM, as opposed to $[(\gamma/2)|\Delta R_i| - |\Delta R_j|]$ in the GNM. Here R_0^2 is the original distance vector between nodes i and j, ΔR_i is that after deformation, and $\Delta R_j = R_i - R_j$. In the

† http://www.ccbb.pitt.edu/CCBBResearchDynProGNM.htm
ANM, Γ is replaced by the $3N \times 3N$ connectivity matrix H, the contacts along the X, Y and Z-directions (instead of a radial distance of R) being explicitly considered. H is proportional to the Hessian matrix of NMA with the two major simplifications: (i) all residues are uniform, coupled with the same force constant; and (ii) a coarse-grained representation (as opposed to full atomic) is adopted. Unlike GNM, ANM yields an analytical solution, thus avoiding simulations with sophisticated potentials or energy minimization. H is a $N \times N$ supermatrix, the off-diagonal super-elements of which are:

$$H_{ij} = \begin{bmatrix} \frac{\partial^2 V}{\partial X_i \partial X_i} & \frac{\partial^2 V}{\partial X_i \partial Y_i} & \frac{\partial^2 V}{\partial X_i \partial Z_i} \\ \frac{\partial^2 V}{\partial Y_i \partial X_i} & \frac{\partial^2 V}{\partial Y_i \partial Y_i} & \frac{\partial^2 V}{\partial Y_i \partial Z_i} \\ \frac{\partial^2 V}{\partial Z_i \partial X_i} & \frac{\partial^2 V}{\partial Z_i \partial Y_i} & \frac{\partial^2 V}{\partial Z_i \partial Z_i} \end{bmatrix}$$

and the diagonal super-elements are found from the negative sum of the off-diagonal terms, as tr designates the trace of σ. The second derivatives of V with respect to the components of the position vectors can be readily found from equation (6), e.g. $\frac{\partial^2 V}{\partial X_i \partial X_i} = -\gamma(X_i - \tilde{X}_i)(Y_i - \tilde{Y}_i)/r_i^2$.

The correlations between fluctuations can be derived from equation (3) if $\gamma^{-1}H$ replaces Γ, which yields the well-known inverse dependence of the covariance matrix C and the Hessian matrix. The mode frequencies in the ANM (or GNM) are given by $\omega_i = \frac{\gamma_i}{\pi}$, where γ_i is the ith eigenvalue of $\gamma^{-1}H$ (or Γ), for $1 \leq i \leq 3N - 6$ (or $N - 1$). Let C_{ij} designate the ith superelement of C, i.e. the 3×3 matrix of the correlations between the components of ΔR_i and ΔR_j. C_i is expressed as a sum over $3N - 6$ non-zero modes, as:

$$C_{ij} = \langle \Delta R_i \Delta R_j \rangle = (k_B T / \gamma) \sum_k \gamma_k \{[u_k^{ANM}]^T [u_k^{ANM}] \} C_{ij}$$

Here (u_k^{ANM}) is the kth eigenvector found by diagonalizing $\gamma^{-1}H$, and the term $[u_k^{ANM}]^T [u_k^{ANM}]$ designates the ith superelement of the matrix enclosed in square brackets. The ms fluctuations of residue i, or corresponding B-factor are found from:

$$\langle [\Delta R_i^2] \rangle = \sum_k \{[\Delta R_i^2] \}_{kk} = trC_{ii}$$

where tr designates the trace of C_{ii}, and the contribution of mode k is calculated from:

$$[\Delta R_i^2]_{kk} = (k_B T / \gamma) \gamma_k^{-1} \{[u_k^{ANM}]^T [u_k^{ANM}] \}_{ii}$$

For more details, the reader is referred to Attilgan et al.39

Conformational changes induced by global modes and reconstruction of all atom models

In as much as the fluctuations are symmetric with respect to the equilibrium coordinates $R_{1}^{i}, R_{2}^{i}, \ldots, R_{3}^{i}$, two sets of deformed conformations are obtained by varying the size of the fluctuations driven by the global modes:

$$R_{i}(\pm s) = R_{1}^{i} \pm \delta R_{1}^{i} = R_{2}^{i} \pm \delta R_{2}^{i} \pm \delta R_{3}^{i} \pm \delta R_{4}^{i}$$

Here s is a parameter that scales the size of the deformation induced by mode 1, and $[u_k^{ANM}]^T [u_k^{ANM}]$ is the ith super element (3D-vector) of the eigenvector u_k^{ANM}. Theoretically s is equal to $(k_B T / \gamma)^{1/2}$, however, in the absence of quantitative information on γ, it is left as a variable to match the changes observed in the different crystal forms. Reconstruction of all atoms model was done by applying equation (15) to each atom, i.e. we add/subtract the fluctuation vector $\delta R_{i}^{(1)}$ for calculating the positions of all atoms belonging to amino acid i. The obtained deformed structure was then minimized using the program mini_pwl of the MOIL package39 with a tolerance of 0.2 kcal/mol.

Utility of combining GNM and ANM

GNM offers the advantage of doing calculations in an N-dimensional space. Matrix diagonalization is the most time-consuming part of the computations. It scales with the third power of the size of the matrix, approximately. Thus GNM calculations are 2–3 orders of magnitude faster than ANM. Secondly, ANM assumes that the displacements in the x, y, and z-directions are all controlled by spring forces, whereas GNM assumes that the magnitudes of the displacements, only, are subject to elastic forces. The fluctuation amplitudes derived by the GNM are in this respect more realistic, as they are devoid of any constraints imposed on the components of the fluctuation vector. Interestingly, even the highest frequency modes of GNM have been shown to be physically meaningful (as opposed to “noise” in NMA), which could be related to folding nuclei and conserved sites.39 Finally, a third advantage of the GNM is the possibility of interpreting the results in terms of statistical thermodynamics concepts. The H/2H exchange free energies (and protection factors) under mildly denaturing conditions are well-accounted for by the entropic contribution to the free energy calculated with the GNM.80 Likewise the present analysis reveals that the entropic forces play a significant role in driving the passage between the T and R2 forms.

On the other hand, GNM cannot predict the directions of the motions, or the components of the fluctuation vectors $\Delta R_i(1 \leq i \leq N)$. These are found by the ANM. In principle, it is possible to “map” the GNM modes to those found by ANM by comparing the square fluctuations $\langle [\Delta R_i]^2 \rangle$, predicted for mode k by the GNM (equation (10)) with the product $\langle [\Delta R_i]^{(1)} \rangle \langle [\Delta R_i]^{(1)} \rangle$ found from ANM (see equation (14)) for mode k for all (i,k) pairs. The pair that yields the minimal difference between the two profiles $(1 \leq i \leq N)$ corresponds to the equivalent modes. Here, we focused on the slowest GNM mode, as the most cooperative mechanism of motion, also confirmed for many systems to be physically meaningful and robust. We identified the corresponding ANM directional vectors by examining the 20 slowest mode profiles found by ANM. This analysis yielded the second slowest ANM mode for the T form (1a3n), and the first for the R2 form (1bbb).

Correlation between ANM slow modes and the displacement vectors between the T and R2 forms

In principle, the deformation undergone by individual residues during the passage from the T to the R2 state does not necessarily conform to the displacement vectors obtained by a linear interpolation between the two states. Nevertheless, it might be of interest to examine to what extent these displacement vectors correlate with those induced by the individual modes. For a comparative analysis, we examined the correlation cosine between these displacement vectors and the eigenvectors associated with the slowest 20 modes obtained by ANM for both the T and R2 forms. Figure 9 displays the results from this correlation. Consistent with the previous
analysis, the second slowest ANM mode obtained for the T state shows a high correlation (>0.7) with the actual displacement vectors. The eigenvectors obtained for the R2 state, on the other hand, show in general a weaker correlation with the displacement vectors, except for the seventh mode, the contribution of which is not as strong as the leading few modes, confirming that the passage R2 → T is not as favorable as the T → R2 passage. Finally, we note that the passage T → R2 seems to be favored to some extent by modes 2 and 8.

Acknowledgements

We thank Drs Ho, Lukin and Thirumalai for insightful comments during the course of this work. C.X. is grateful to N. Alpay Temiz, Basak Isin and Lee Wei Yang for sharing their expertise in GNM and ANM methods.

References

Edited by M. Levitt

(Received 29 April 2003; received in revised form 29 July 2003; accepted 11 August 2003)