POLARIZATION, SPIN CHIRALITY AND CANTING, TOROIDAL MOMENT INDUCED BY DZIALOSHINSKY-MORIYA INTERACTION IN V_3 NANOMAGNET IN TRANSVERSE MAGNETIC FIELD

Moisey I. Belinsky

School of Chemistry, Tel-Aviv University, Tel Aviv, Ramat Aviv 69978, Israel, belinski@post.tau.ac.il

Abstract

Spin canting, electric polarization, spin chirality, toroidal and magnetic moments are investigated in the spin-frustrated V_3 single-molecular magnet (V_3) with the out-of-plane (D_x) and in-plane (D_x, D_y) Dzialoshinsky-Moriya (DM) interaction in transverse magnetic field $B_z \perp Z$ lying in the triangle XY plane perpendicular to the trigonal Z axis. The spin current (or inverse DM) mechanism of polarization P is the driving force of the polarization $P_z(B_z)$ induced by the D_x coupling in the field B_z. The inverse DM mechanism leads to polarization $P_z(B_z)$ which increases nonlinearly with increasing field B_z, reaches a maximum at the avoided level crossing field B_{ac} and then gradually decreases in high fields. In transverse field B_z, the D_x coupling in V_3, results also in the field-induced in-plane toroidal moment $T_y(B_z)\parallel Y$. The origin of $P_z(B_z)$ and $T_y(B_z)$ is the large out-of-plane spin fluctuations induced by the D_x coupling. The correlations between the polarization, toroidal and magnetic moments, spin chirality and spin canting in transverse field were investigated in detail. The dynamics of the individual S_1, S_2, S_3 spins in the ground and excited states of the avoided level crossing structure in transverse field $B_z (B_x, B_y)$ significantly differs from the spin dynamics in the field $B_z \parallel Z$. The field-induced spin canting in B_z includes large canting of the (S_1, S_2) and S_3 spins in opposite directions which is accompanied by the significant different change of the M_i projections. The coupling between the vector chirality κ and transverse field B_z is non-linear. The vector chirality $\kappa_z(B_z)$ describes the in-plane fluctuations and rotations of the S_1, S_2 spins in transverse field B_z. The D_y coupling in the V_{3y} system results in the field-dependent toroidal magnetic moment $T_y(B_z)\parallel X$ in B_z. Under the field B rotation in the XZ plane, the polarization $P_z(B)$ demonstrates the reduction of the magnitude, while the toroidal moment T exhibits the $T_y(B_z)\rightarrow T_z(B_z)$ flop and reduction. The DM V_3 nanomagnets are the cluster analogs of multiferroics.

1. Introduction

Clusters and rings of transition metal ions have attracted a great interest as nanoscale molecular magnets and the elements for potential application in molecule-based quantum computation and magnetolectronics [1-10]. The Dzialoshinsky-Moriya [11, 12]
(DM) interaction $\mathbf{H}_{\text{DM}} = \sum \mathbf{D}_{ij} [\mathbf{S}_i \times \mathbf{S}_j]$ results in the zero-field splitting (ZFS) of the spin-frustrated $2(S=1/2)$ states [13-33, 2, 5, 7-10], the spin frustration, quantum Rabi oscillations [2], quantum magnetization, owing to the spin-frustrated doublets and tunneling gap at level crossing (LC) field [14-21, 7-10] anisotropy of magnetization [13-24], anisotropy of EPR spectra [13, 9, 10, 18, 25, 27, 30, 31] and inelastic neutron scattering (INS) spectra. [29, 34, 35], field dependent spin chirality [30-33] and spin reorientation [32, 33] in the antiferromagnetic (AFM) V_3 [7,8], $\{\text{Cu}_3\}$ [9, 10] molecular magnets, and V_3 ring of V_{15} single-molecular magnet (SMM) [14-31]. The single peak of the differential magnetization at LC field observed in V_3 [7] shows that the ground branch of V_3 possesses the avoided LC structure and large tunneling gap Δ_J at LC field [7, 8]. The quantum magnetization at LC field in the V_3 ring of V_{15} [14-17] and V_3 [7, 8], $\{\text{Cu}_3\}$ [9, 10] nanomagnets was explained by the action of the in-plane and out-of-plane DM exchange coupling, different mixing of the spin-frustrated states characterized by the different spin chirality with the $S=3/2$ state, and tunneling gap Δ_J at LC. The spin chirality of the trinuclear nanomagnets has been proposed [3, 5, 7, 9, 10, 36-38] as the parameter for electric control of the spin triangles as units for molecule-based devices.

In multiferroics, electric polarization \mathbf{P} can be significantly modified by the application of a magnetic field [39-52], the magnetic-field induced generation or flop of \mathbf{P} show strong magnetoelectric coupling (for review see Refs [44, 45]). The spin current model of Katsura, Nagaosa and Balatsky (KNB) [39] or inverse DM model [40, 41] of the polarization \mathbf{P} in multiferroics proposed that the neighboring canted spins (\mathbf{S}_i and \mathbf{S}_j) produce the electric polarization $\mathbf{P} = \sum_{ij} A_{ij} [\mathbf{e}_{ij} \times [\mathbf{S}_i \times \mathbf{S}_j]]$, where \mathbf{e}_{ij} is the unit vector connecting the sites i and j. Microscopic expressions for the A_{ij} constant, which depend on the superexchange and SOC, were obtained in [42, 43], $A \sim 10^{-10} \mu C / m^2$. The existence of the DM exchange is an essential ingredient in the theory [39-43] of the magnetoelectric effect in multiferroics with noncollinear spins. The exchange-striction mechanism of \mathbf{P} was also proposed [51, 52, 42b] for the explanation of \mathbf{P} in some collinear AF. Direct evidence of the spin current mechanism and the key role of the vector chirality κ have been confirmed in multiferroics with the spiral spin structures [44, 45]. The investigations of \mathbf{P} in multiferroics in transverse and tilted magnetic field [46-50] show important role of the magnetic anisotropy in the \mathbf{B} induced polarization.

The DM induced multiferroic behavior in tetramer SMM with the polarization \mathbf{P} in the KNB model in the form of the sharp peaks at the level crossing has been predicted first in Ref [53]. The spin-electric coupling in the $\{\text{Cu}_3\}$ nanomagnet, originating from a modified exchange constants induced by the applied electric field, was proposed recently [37, 38]. Since the spiral-spin magnets are potential candidates of the new multiferroic materials [54] the systems with the toroidal magnetic moment $\mathbf{T} = \frac{1}{2} \mu_0 g \sum [r_i \times \mathbf{S}_i]$ of the spins with the circular arrangement also attract attention [54-59]. In the trinuclear SMM, the Jahn-Teller effect [57] and the local magnetic anisotropy [59] result in \mathbf{T} which interact with electric field. The polarization in the KNB model, toroidal moments, spin chirality and spin canting in the V3 DM nanomagnet in the applied magnetic field $B_z \parallel Z$ (along the trigonal axis Z) have been investigated in Refs [32, 33]. The DM V_3 analog of
multiferroics demonstrates the field induced \(\mathbf{P} \) and \(\mathbf{T} \), non-linear field dependence of the spin chirality and complicated spin dynamics at the avoided LC[32, 33].

The KNB polarization \(\mathbf{P} \) and toroidal moment \(\mathbf{T} \) of \(V_3 \), induced by the in-plane DM coupling, as well as their correlations with the spin chirality, spin fluctuations and canting and magnetic moment \(\boldsymbol{\mu} \) have not been considered in transverse field \(\mathbf{B}_z \). Since \(\mathbf{P} \) in multiferroics strongly depend on the orientation and tilt of the applied magnetic field \(\mathbf{B} \), it is essential to consider the polarization of DM \(V_3 \) analog of multiferroics in transverse field. Field dependence of the spin chirality and spin canting, the spin dynamics at the avoided level crossing and the microscopic mechanisms of the energy-levels repulsion also have not been considered for \(V_3 \) in transverse field \(\mathbf{B} \perp \mathbf{Z} \). Because the avoided LC has different structure in the field \(\mathbf{B}_z \perp \mathbf{Z} \) directed in the triangle plane and perpendicular to the triangle plane \(\mathbf{B}_z \parallel \mathbf{Z} \) it is necessary to investigate the field-induced spin dynamics at the avoided LC states in \(\mathbf{B}_z \), the microscopic origin of the field-induced spin canting and fluctuations in transverse field, and their correlations with \(\mathbf{P}, \mathbf{T}, \boldsymbol{\mu} \) and chirality. The consideration of the avoided LC is of interest because this magnetic repulsion of the Zeeman levels determines the magnetic and spectroscopic LC characteristics of the DM metal trimers [7-10, 16-33], metal rings [60] and the quantum superposition of states with different spin length [61] at LC in SMM. The joint consideration of the DM induced KNB polarization \(\mathbf{P} \), spatial spin canting and fluctuations, spin chirality \(\kappa, \chi \), toroidal \(\mathbf{T} \) and magnetic \(\boldsymbol{\mu} \) moments, their response to transverse and tilted magnetic field \(\mathbf{B} \), spin dynamics at the avoided LC is important for potential use of these characteristics in molecular-based devices. The purposes of this paper are i) to consider the KNB polarization \(\mathbf{P} \) of \(V_3 \) DM nanomagnet in transverse field \(\mathbf{B}_z \); ii) to investigate the spin dynamics (field-induced spin canting) generated by DM exchange at the ground and excited states of the avoided LC structures with tunneling gap \(\Delta_3 \) at LC in transverse field \(\mathbf{B}_z \) and correlations of the spin canting with \(\mathbf{P}, \mathbf{T} \) and chirality in this case; 3) to consider the dependence of the vector \(\kappa \) spin chirality on transverse magnetic field \(\mathbf{B}_z \) and correlations between the vector chirality \(\kappa \) and the spin canting and the spin structures, \(\mathbf{P}, \mathbf{T} \) and \(\boldsymbol{\mu} \) in \(\mathbf{B}_z \); 4) to investigate the DM induced toroidal moment \(\mathbf{T} \) in transverse field and its correlations with the spin fluctuations and the in-plane spin canting.

2. DM model of \(V_3 \) trimer with DM(x) mixing in transverse field

The exchange Hamiltonian of EQ V3

\[
H = \sum_{ij}(J\mathbf{S}_i \cdot \mathbf{S}_j + \mu_{\text{eff}} g_i \mu_i \mathbf{S}_i \cdot \mathbf{B}) + H_{\text{DM}} + D_{\text{ax}}[S_x^2 - S_y(S+1)],
\]

(1)

includes the Heisenberg isotropic exchange, the antisymmetric DM Hamiltonian \(H_{\text{DM}} \)

\[
H_{\text{DM}} = D_{\text{ax}} \sum_{ij} \{ [S_x \times S_y]_x + D_x \{ [S_x \times S_y]_y - \frac{1}{2}[S_x \times S_z]_z - \frac{1}{2}[S_z \times S_y]_y + \frac{\sqrt{6}}{2}[S_z \times S_x]_x + \frac{\sqrt{3}}{2}[S_z \times S_x]_x \}
\]

\[
- \frac{\sqrt{6}}{2}[S_z \times S_x]_x + D_x \{ [S_x \times S_y]_y - \frac{1}{2}[S_x \times S_z]_z - \frac{1}{2}[S_z \times S_y]_y - \frac{\sqrt{6}}{2}[S_z \times S_x]_x + \frac{\sqrt{3}}{2}[S_z \times S_x]_x \},
\]

(2)

in the right-handed (XYZ) cluster, and the \(S = 3/2 \) ZFS term where \(D_{\text{ax}} \) is the axial ZFS parameter, \(ij = 12, 23, 31 \). The pair out-of-plane \(D_x \) vector components \((D_x = D^*_{y}) \) are oriented along the Z-axis perpendicular to the triangle \(XY \) plane. The pair in-plane \(D_x \)
DM interaction \((D_x = D_y)\) is lying in the triangle plane bisecting the \(ij\) bonds between the \(ij\) sites, the pair \(D_y = D_{ij}^y\) DM interactions are parallel to the \(ij\) bonds. The energy-level scheme of the \(S_z = 1/2\) trimer with the DM mixing in transverse field \(B \perp Z\) has been considered [7-10, 16, 17, 22-25, 28-32], however, the dependence of the states and LC on the spin chirality in transverse field, the correlations between the levels, avoided LC structure and the spin canting, chirality, fluctuations, polarization \(P\) and toroidal \(T\) and magnetic moments in \(B \perp Z\) were not considered.

In Fig. 1 for \(V_{3x}^R\) with \(D_z < 0\) and the \(D_x\) coupling, we show the scheme of the spin levels, spin chirality and tunneling gaps in transverse field \(B_x \perp Z\) of \(V_{3x}^R\) with

\[
\chi(B_x) = 0
\]

GS of the right zero-field (ZF) vector chirality \(\kappa_1^0 = \kappa_\parallel^0 = +1\), \(J = 4.8\, \text{K}\), \(D_z = D_x = -0.5\, \text{K}\), \(D_y = 0\), \(g = 1.95\), \(2D_0 = -0.120\, \text{K}\) [7, 8]. The ZFS of the spin-frustrated \(2(S = 1/2)\) set is formed by the \(D_z\) -coupling with the small in-plane \(D_p\) admixture of the \(S = 3/2\) states [23, 24, 28, 29]. The magnetic and spectral behavior in the vicinity of LC \(B_{AC} = -B_{AC}\) is determined by the three level schemes, which consists of the I–III avoided LC structure, and the linear ES II without the DM mixing with the \(|3/2, -3/2 >_x\) in Fig. 2. The GS I {the second ES III } of the avoided LC structure with tunneling gap \(\Delta_{\text{in}}\) at \(B_{AC} = B_{AC}\) field demonstrates the field-induced \([S_{gr} = 1/2 \rightarrow S_{gr} = 3/2]\) \{\([S_{ex} = 3/2 \rightarrow S_{ex} = 1/2]\)\} spin transition. The \(D_x\) induced tunneling gap \(\Delta_{\text{ex}}\) between the states I and III in transverse field at the avoided LC field \(B_{AC}\) is \(\sqrt{2}\) smaller than gap \(\Delta_{\text{in}}\) in the field \(B||Z\), \(\Delta_{\text{ex}} = 0.530\, \text{K}\) in Fig. 1. The change of the positive chirality \(\kappa_1, \kappa_\parallel\) of the lowest \(1^R_x\) \{\(\phi_{\text{ex}}^R(S_{12} = 1)\) and

Fig. 1. Energy level scheme of the \(V_{3x}^R\) trimer with the in-plane \(D_x\) spin mixing in transverse magnetic field \(B_x \perp Z\).
II^R_x [\Phi^R_{\text{I}}(S_{12} = 0)] states in an increasing field B_x is presented in Fig. 1. The scheme of the spin levels of V_{3x} trimer with D_z > 0 has the form of Fig. 1 with the ground \Gamma^L_x, \Pi^L_x doublet, characterized by the negative ZF (0T) vector chirality \kappa^0_1 = \kappa^0_\Pi = -1. The spin chirality in transverse field is considered in Sec. 4, 5.

In the H_{\text{DM}} model (D_x = D_y = 0), the ground double-degenerate I,II doublet exhibits simple crossing with the \{3/2, -3/2, >_z \} state at LC field B_{AC}, Appendix A. The wavefunctions \Phi^0_{\text{I}}, \Phi^0_{\text{II}} of the degenerate GS (1,II) of the 2(S=1/2)_x sector the H_{\text{DM}} model in B_x are given in Appendix A in the representations of the chirality and intermediate spin S_{12} quantum numbers. The D_x coupling splits the double-degenerate (\Phi^0_{\text{I}}, \Phi^0_{\text{II}}) doublet of the H_{\text{DM}} model in B_x on the GS \Phi^0_{\text{I}}(S_{12} = 1) and ES \Phi^0_{\text{II}}(S_{12} = 0) characterized by S_{12} = 1 and S_{12} = 0, respectively, Fig. 1.

3. Polarization of V_3 with DM(x) mixing in transverse field B \perp Z

The KNB polarization operator P of the spin current model [39] for multiferroics has the form

\[P = \sum_q A_q [e_q \times (S_i \times S_j)], \]

(3)

where \(e_q \) is the unit vector connecting the sites i and j. This KNB operator for the V_3 DM system (A_q = A) can be represented [31, 32] in the form

\[P = P_z + P_x + P_y, \]

where

\[\begin{align*}
P_z &= -e_z A [S_1 \times S_2]_x - [S_2 \times S_3]_x - [S_3 \times S_1]_x + \sqrt{2} \left([S_2 \times S_3]_y - [S_1 \times S_3]_y \right), \\
P_x &= -e_x (A/2)(2[S_1 \times S_2]_z - [S_2 \times S_3]_z - [S_3 \times S_1]_z), \\
P_y &= e_y (A \sqrt{2} / 2) ([S_2 \times S_3]_z - [S_1 \times S_3]_z)
\end{align*} \]

in the right-handed cluster frame, \(e \) is the unit vector. The P_3 spin part of the polarization operator \(P_z = -e_z A P_3 \) (4) coincides with the spin operator of the in-plane H_{\text{DM}}(x) coupling in Eq (3) \(P_1 = H_{\text{DM}}(x)/D_z \) (\(D_z = 1, D_z = D_y = 0 \)). In the H_{\text{DM}} model \((D_p = 0) \), the KNB polarization is equal to zero, \(P_{\text{KNB}} = 0 \).

In transverse field B_x \perp Z, the D_z coupling (Fig. 1) determines the KNB P and spin canting of V_{3x}. In Fig. 2, we depict polarization P_{\text{N}}(B_x) || Z numerically calculated in the KNB model (4) for GS N = I and ES II, III of Fig. 1. \(D_z = D_x = \pm 0.5K \), \(J = 4.8K, D_y = 0 \). The superscripts +(-) or L(R) in P_{\text{N}}(\pm) (B_x) = P_{\text{N}}^{(R)(L)} correspond to \(D_z = D_x = (+(-)0.5K \) of V_{3x} (V_{3x}). In increasing B_x, the KNB P_1 (solid curve in Fig. 2) of the GS I^L_x (\(\kappa^1_1(0T) = 1 \)) of V_x increases non-linearly from the ZF value \(P_{10} \), shows the maximum \(P_{1}^{(R)}(\text{max}) = 0.526A \) at \(B_{AC} \), and, then, decreases slowly for \(B_x > B_{AC} \). The total increase is \(\Delta P_{1}^{(R)}/P_{10} \approx 6 \), \(\Delta P_{1}^{(R)} = P_{1}^{(R)}(\text{max}) - P_{10} \). P_1 (dash) of GS II^L_x (\(\kappa^1_1(0T) = -1 \)) of V_{3x} shows the similar non-linear increase from the ZF \(P_{10} \) to the \(P_{1}^{(R)}(\text{max}) = 0.532A \) at \(B_{AC} \), and, then, decrease for \(B_x > B_{AC} \), \(\Delta P_{1}^{(R)}/P_{10} \); 22, Fig. 2.
The KNB polarization $P^R_N (P^L_N)$ of the lowest levels of $V^R_{3x} (V^L_{3x})$ in transverse field B_x.

The KNB $P^{R(L)}_N (B_x)$ does not change the direction with sweeping B_x along the X-axis: $P^{R(L)}_N (B_x) = P^{R(L)}_N (B_x)$, (see Fig. 6b). For $|B_x| > 3T$, the values of P^R_1 and P^L_1 are very close and does not depend practically on the signs of the chirality: $|P^L_1| \approx |P^R_1|$, Fig. 2. At the same time, the LFPR_1 and P^L_1 differ significantly, Fig. 2. The ZF $P^{R(L)}_{I,0} = P^{R(L)}_{II,0}$, $P^{R(L)}_{III,0} = P^{R(L)}_{IV,0}$ for $B_x \perp Z$ coincide with that for $B_z \parallel Z$ [31, 32].

P^R_1 of the first linear ES II^R_1 (Fig. 1), is very small (Fig. 2, $P^L_1 = |P^R_1| = P^L_1$ for $|B_x| > 3T$) and does not depend on B_x. $P^R_{III} (P^R_{III})$ of the ES III is opposite in the sign to P^R_1 (P^L_1) and practically coincides with $P^L_{III} (P^R_{III})$ for $|B_x| > 3T$ in Fig. 2.

4. Spin canting and spin chirality in transverse field in the H_{DM}^z model

A. Spin canting in the DM(z) model without the D_z spin mixing

The vector chirality is a key factor for the appearance of polarization in multiferroics [44, 45]. The spin chirality and canting in the field $B_z \parallel Z$ were considered in [31, 32]. Only zero-field spin chirality of the trimers with strong Heisenberg exchange is usually considered and only one type of chirality (or vector, or scalar chirality) is discussed. For better understanding the role of the chirality and spin canting in polarization P in transverse field B_x we consider first these characteristics of V_3 in the H_{DM}^z model with $D_\perp = 0$. In Fig. 3a for $V^R_{3x} (D_z < 0)$ in the H_{DM}^z model in B_x, we depict field dependence of the $m_iz, m_iz, m_iz, m_iz, m_iz, m_iz$ projections of the spins \mathbf{S}_i and \mathbf{S}_i in the XY plane in the I_1 and I_2 lowest double-degenerate $\Phi_1^0 = \Phi_1^0, \Phi_1^0 = \Phi_1^0$ states which coincide with the level II in Fig. 1. The out-of-plane
m_i projections in B_x are equal to zero in the \mathbf{H}_{DM}' model, $m_x = m_{ix} = 0$, and the individual spins $\mathbf{S}_i = \mathbf{S}$ and $\mathbf{S}_i = \mathbf{S}_i$ lie in the XY plane, as shown in the planar schemes in Fig. 3a, where the arrows at the vertices schematize the $m_{ip} = \mathbf{S}_i$ (Schemes Ia, Ib) and $m_{ip} = \mathbf{S}_i$ (IIa) in-plane spin projections. In the low field (LF) $B_x = +2mT$, all the in-plane m_{ip} projections have the same value in the Schemes Ia and IIa for in the I and II ([$m_{ip} | m_{ip}_i$] = 1/3, $i = 1, 2, 3$). In the LF planar 120° spin structure Ia (IIa) in Figs. 3a, 3b, the \mathbf{S}_i, (m_{ip}) \mathbf{S}_i arrows point directly towards [away from] the triangle center. An increasing field ($B_x > 1.5T$) results in the high-field (HF) constant values $m_{3x} = 1/6$ and $m_{3x} = -1/2$ for I and II, respectively, in Fig. 3a. The in-plane $|m_{ip}| = |m_{ip}|$ of I_{R} (Fig. 3a) show very weak field dependence at LF, $|m_{ip}| = |m_{ip}| = 1/3$ for $B_x > 1T$, while for II $|m_{ip}| = |m_{ip}| = 0$, $|m_{ix}| = |m_{ix}| = 0$ for $B_x > 2T$. The m_{ip} have opposite signs for $B_x > 0$ and $B_x < 0$ in Fig. 3. Small negative field ($B_x = -2mT$) changes the in-plane orientations of the spins and results in the 120° spin structure Ib for I_{R}. The in-plane GS spin structure at HF B_x ($B_x > B_{AC}$) shows the collinear $S = 3/2$ spin Scheme $I\alpha$ ($M_x = -3/2$, $m_{ix} = -1/2$) for $B_x > 0$ and $I\beta$ ($M_x = 3/2$, $m_{ix} = 1/2$) for $B_x < 0$ in Fig. 3a. The B_x variation of a net in-plane projections $M_{ix} = M_{ix}$ of the total spins \mathbf{S}_i and \mathbf{S}_i of the I and II states $M_{ix} = M_{ix} = -h_{ij} / \sqrt{3D_2^2 + 4h_{ij}^2}$, describes the non-linear change of M_x from the zero ZF $M_x^0(0T) = 0$ to the value $M_x = 1/2$ ($M_x = 1/2$) at positive (negative) HF B_x before LC. $P = 0, T = 0$ for all the states and spin structures in Fig. 3 of the \mathbf{H}_{DM}' model in field B_x.

An increase of the field $B_x \parallel X$ reduces the symmetry from the trigonal C_3 to the rhombic C_2, forms the intermediate S_{12} spin of the states and changes the LF spin structures a) and b) of Fig 3a in the \mathbf{H}_{DM}' model. Fig. 3b shows the field-induced transformation of the LF in-plane Ia and IIa spin-frustrated 120°-spin structures into the HF planar $S = 1/2$ spin configurations, which are characterized by $S_{12} = 1$ ($m_{ix} = m_{ix} = -1/3, m_{ix} = 1/6$ for HF B_x, $m_{iy} = 0$) and $S_{12} = 0$ ($m_{ix} = m_{ix} = 0, m_{3x} = -1/2$ for HF B_x, $m_{iy} = 0$), respectively, $m_i = |m_{ip}| = |m_{2p}|$, $m_1 = |m_{ip}| = |m_2| = |m_{2p}|$ in Figs. 3b, 3c. Fig. 3b also shows the projections M_{ix} of \mathbf{S}_i and corresponding vector chirality $\kappa_{1}^{R,L}$, $\kappa_{II}^{R,L}$ of the $I^{R,L}$ and $II^{R,L}$ states of the \mathbf{H}_{DM}' model; $M_{ix} = 0$. The superscripts $R(L)$ or $(-+)$ correspond to $D = D_{x} = -(+0.5K)$. For V_{3}^{R}, the LF 120° planar structure Ia of the I^{R} state with the LF maximum $\kappa_{1}^{R}(2mT) = 1$. $M_{ix} \approx 0$ is transformed at HF $B_x = 4T$ into the Ic, which is very close to
Fig. 3 The in-plane spin structures of the I and II levels of the double-degenerate lowest (\(\Theta_{I_x}^0, \Theta_{II_x}^0\)) state of \(V_3^R\) in the \(H_{DM}^z\) model (\(D_p = 0\)) in transverse field \(B_x \perp Z\). The out-of-plane \(m_{ix}\) spin projections are equal to zero. a) The in-plane spin projections \(m_{in}\) (\(m_{in}^\perp\)) of the state I (II), the low-field 120° (Ia, IIa for \(B_x > 0\) \(\text{and } B_x < 0\)) and high-field collinear (Iaβ, IIβ) spin structures for \(D_z, D_x < 0, D_y = 0\). The field variation of the in-plane spin structures of the states of \(V_3\) in the \(H_{DM}(z)\) model with \(D_z, D_x < 0\) (I, II) and \(D_z, D_x > 0\) (Γ, II′) in magnetic field \(B_x \parallel X\) (b) and \(B_y \parallel Y\) (c).
the spin-collinear HF $|S = 1/2, S_{12} = 1 >_x$ structure, $[\kappa^R_1(4T) = +0.16, \ M_{ix} = -0.494, \ \mu_{ix} = 0.99 \mu_B]$. This $\Phi_{ix}(S_{12} = 1)$ is mixed with the $[3/2, -3/2 >_x$ in Fig. 1. The LF IIa(2 mT) in-plane 120°-structure of IIR with $\kappa^R_{II}(2 mT) = +1$ is transformed at HF into the planar IIc, which is very close to the HF $|S = 1/2, S_{12} = 0 >_x$ spin structure $[\kappa^R_{II}(4T) = +0.16, \ M_{ix} = -0.494]$, Fig. 3b.

The Schemes I’ and II’ in Fig. 3b show the field induced change of the in-plane structures of the two spin-frustrated IL, IIL states of VL_3 in the \textbf{H}_{dm}^y. The LF (2 mT) 120° spin structure Ia’ of IL with maximum LF $\kappa^L_1 = -1$ ($M^*_x \approx 0$), is transformed at $B_x = 4T$ into the in-plane HF $|1/2, S_{12} = 1 >_x$ structure Ic’ $[\kappa^L_1(4T) = -0.16, \ M^*_x = -0.494]$. The LF spin structure IIa’(2 mT) ($\kappa^L_{II} = -1$) tends into the HF in-plane $|1/2, S_{12} = 0 >_x$ spin structure IIc’ ($\kappa^L_{II}(4T) = -0.16$).

The in-plane spin structures of the \textbf{H}_{dm}^y model also depend on the orientation of the in-plane field B_x. Fig. 3c shows the in-plane spin structures, the local spin projections, spin chirality and the values M_y of the total spin projections of the system of Fig. 3b in the external in-plane magnetic field oriented parallel to the Y-axis, $B_y \parallel Y$. The in-plane spin structures I, II $\{I’, II’\}$ of the states of the positive vector chirality, $\kappa^R_1(B_y)$, $\kappa^R_{II}(B_y) > 0$ {negative chirality, $\kappa^L_1(B_y)$, $\kappa^L_{II}(B_y) < 0$} differ from the corresponding in-plane spin structures in Fig. 3b for $B_x \parallel X$ by the $\pi/2$-rotations of the corresponding individuals spin S_i arrows at the i-vertexes. At the same time, the dependence of the vector chirality $\kappa^R_{1(II)}(B_y)$ is the same for $B_x \parallel X$ and $B_y \parallel Y$.

125
B. Spin Chirality in H^{DM} model without DM(x) mixing

The operators of the vector spin chirality \hat{K}_z [62] and the scalar spin chirality \hat{C} [36,37] of the $S_z=1/2$ trimer system have the form

$$\hat{K}_z = (2/\sqrt{3})\left([S_z \times S_x]_z + [S_z \times S_y]_z + [S_z \times S_x]_z \right),$$

$$\hat{C} = (4/\sqrt{3})S_z \cdot [S_z \times S_x].$$

The DM D_z exchange determines the vector κ and scalar χ spin chirality of V_3 in magnetic field $B_z \parallel Z$ [30-32]. The in-plane components of the chirality vector are equal to zero in the ground and excited states of V_{3x}^R, V_{3x}^L for $B_z \parallel Z$ and $B_z \parallel X$, $\kappa_x = <\hat{K}_x> = 0$, $\kappa_y = <\hat{K}_y> = 0$.

The GS scalar χ chirality in the field $B_z \parallel Z$ correlates with the vector chirality $\chi_1^+(B_z) = -\kappa_1^x$ for $B_z > 0$, $\chi_1^+(B_z) = \kappa_1^y$ for $B_z < 0$ [32]. The scalar chirality $\chi_N(B_z) = <\Phi_{R(L)}^{\text{tr}} | \hat{C} | \Phi_{R(L)}^{\text{tr}} >$ in transverse field $B_x \perp Z$ is equal to zero, $\chi_N(B_z) = 0$.

In Fig. 4a ($B_z > 0$), we plot calculated right {left} vector chirality $\kappa_1^R = \kappa_1^L(B_z)$ for the GS $\Gamma \{ \Gamma = \Gamma' \}$ with $S_{12} = 1$ of $V_{3x}^R \{ V_{3x}^L \}$ in the H^{DM}, $\kappa_{1R}^{\text{tr}} = <\Phi_{R(L)}^{\text{tr}} | \hat{K}_z | \Phi_{R(L)}^{\text{tr}} >$, and $\kappa_1^R = 1$ $[\Delta_1^- = -1]$ of $V_{3x}^R \{ V_{3x}^L \}$ in $B_z \parallel Z$. Fig. 4a also shows the in-plane m_3, m_y, m_2y projections, the in-plane spin structures, κ_{1R}^{tr}, and canting angles ζ for S_1, S_2, S_3 in the GS Γ and Γ' of Fig. 3b. The chirality $\kappa_{1R}^{\text{tr}}(B_z)$ strongly decreases non-linearly with an increase of B_z. The in-plane canting angle $\zeta(B_z) = \zeta_x$ for $S_1 (m_1 = m_{ip}) \{ S_2 (m_2 = m_{ip}) \}$ in Fig. 4a for the $S_{12} = 1$ GS is determined by equation

$$\tan \zeta = \Delta_0 \sqrt{3} / (\epsilon_x^0 + h_x),$$

(7)

$\zeta(B_z)$ is the angle between the resulting in-plane m_{ip} projections and the X axis, ($i = 1,2$) Fig. 3a. The initial LF canting angle is $\zeta_0(B_z = 2 \text{mT}) = \pi / 3$ for S_1, S_2 and all initial LF radial m_{ip} projections (arrows) have the same value (length) $|m_{ip}^R| = 1/3$ in Figs. 3a, 3b. The increasing B_z rotates the m_3, m_y arrows of the nearly constant length at the 1 and 2 vertices in the triangle plane in the opposite directions, Fig. 4a. The HF B_x orients the m_{ip} and m_{ip} projections parallel to the X axis, $\zeta \rightarrow 0$ at HF in Eq. (7), Figs. 3b ($\Gamma c, \Gamma c'$) and 4a. At the same time, the increasing B_z simultaneously changes only the length of $m_3 (m_{3x} = 1/3 \rightarrow m_{3x} = 1/6)$, $m_{ip} \parallel B_z$. This field-induced in-plane $[\zeta_1, m_1; \zeta_2, m_2; m_3] = [\zeta, m_{ip}]$ spin-canting tends to the collinear HF $|S = 1/2, S_{12} = 1 > \chi$ spin structure in Figs. 3b and 4a. The in-plane canting angle $\zeta'' = \zeta_{1L}$ for the S_1, S_2 spins with the decreasing length $m_{ip} = m_{2p}$ (Fig. 3a) of the Γ and Γ' states with $S_{12} = 0$ (Fig. 3b), is determined by equation $\tan \zeta'' = \Delta_0 \sqrt{3} / (\epsilon_x^0 - h_x)$.

The field dependence of the vector chirality $\kappa_{1R}^{\text{tr}}(B_z)$ (Fig. 4a) has the form

$$\kappa_{1R}^{\text{tr}}(B_z) = +(-) |D_z| \sqrt{3} / \sqrt{3D_z^2 + 4h_x^2} = +(-) 2\sqrt{3} |m_{ip}| = +(-) 2\sqrt{3} |m_{ip}| \sin \zeta_{1L},$$

(8)

126
in the H_{DM}^x model, \(\sin \zeta_x = \Delta_0 \left\{ 3 / [(\epsilon_x^0 + h_x)^2 + 3\Delta_x^2] \right\}^{1/2} \), \(B_x > 0 \). The \(\kappa_{\text{III}}^{R(L)}(B_x) \) is determined by the out-of-plane \(D_z \) coupling and \(B_x \), \(\kappa_{\text{II}}(B_x) \| Z \), \(\kappa_{\text{I}}^{R(L)} = \kappa_{\text{III}}^{R(L)} \). The field-dependent vector chirality \(\kappa_{\text{II}}(B_x) \propto m_{ly} \) (Eq. (8)) correlates with the \(D_z \)-induced in-plane spin fluctuations \(m_{ly}, m_{zy} \) of the \(S_1, S_2 \) spins (\(m_{zy} = -m_{ly} \)). Since the in-plane \(m_i = |m_{ip}| = m_{iz} = |m_{zp}| \) are changed very slowly only at LF (Figs. 3a and 4a), the GS \(\kappa_{\text{I}}^{R} \) (8) \([\kappa_{\text{I}}^{R}] \) directly correlates also with the in-plane spin canting \(\sin \zeta \) of the \(S_1, S_2 \) spins in Fig. 4a. The upper part of Fig. 4a for GS 1^R

\[
\sin \zeta = \Delta_0 \left\{ 3 / [(\epsilon_x^0 + h_x)^2 + 3\Delta_x^2] \right\}^{1/2} \]

\[
\kappa_{\text{I}}^{R(L)}(B_x) \propto m_{ly}
\]

\[
\kappa_{\text{II}}(B_x) \| Z
\]

\[
\kappa_{\text{III}}^{R(L)} = \kappa_{\text{IV}}^{R(L)} = -\kappa_{\text{I}}^{R(L)}
\]

Fig. 4a

Fig. 4a: The correlation between the vector spin chirality \(\kappa_{\text{I}}^{R(L)}(B_x) \) of GS of \(V_3^L \) (\(V_3^R \)) and the angle \(\zeta \) of the in-plane spin canting of the \(S_1 \) and \(S_2 \) spins in transverse field \(B_x \) in the H_{DM}^x model. The low-field \(120^\circ \) spin structures with \(\kappa_{\text{I}}^{m} = \pm 1 \) correspond to \(\zeta_0 = 60^\circ \). b)

Fig. 4b

Fig. 4b: Coefficients \(n_1, n_2 \) and vector chirality \(\kappa_{\text{I}}^{R(L)}(B_x) \) of GS of \(V_3^L \) (\(V_3^R \)).
The field dependence of the contributions of the spin structures with positive ($\kappa_1 = 1$) and negative ($\kappa_1 = -1$) vector chirality to a net GS spin chirality and simultaneous variation of the S_{\perp}-structures contributions to GS in transverse field B_z.

of V_3^R shows that the positive GS $\kappa_1^R(B_z) \propto \sin \zeta$ describes the in-plane anticlockwise and clockwise rotations of the S_1 (m_1) and S_2 (m_2), respectively in the increasing B_z. Eq. (8) and Fig. 4a explain the correlations between the vector chirality $\kappa_1^R(B_z)$ and the spin structures in the planar Schemes Ia, Ib, and Ic in Fig.3b. In the field-induced $[\zeta, m_i]$ spin-canting in H_{DM}, the S_1 and S_2 spins rotate in the V_3^R plane, beginning from an initial internal canting angle $\zeta_0 = \pi / 3$ in the LF planar 120$^\circ$ spin scheme I_a^R with the radial $|m_i| = 1/3$ arrows and $\kappa_1^R(0T) = 1$, to the HF $\zeta = 0$, which corresponds to $\kappa_1 \to 0$ and the collinear planar HF $|1/2, S_{\perp}| = 1 >_x$ configuration with $m_{ix,ix} \to -1/3$, $m_{3x} \to 1/6$, $M_{ix} = \sum m_{ix} \to -1/2$. For the lower V_3^L part of Fig. 4a, the negative vector chirality $\kappa_1^L(B_z) \propto -\sin \zeta$ of the GS I_a describes the clockwise and anticlockwise in-plane ζ-rotations of the S_1 (m_1) and S_2 (m_2), respectively, in the opposite directions in the spin schemes for $\kappa_1^L < 0$. The field-induced in-plane $[\zeta, m_i]$ spin-canting for V_3^L represents the transformation from the LF (2mT) planar 120$^\circ$ spin structure I_a^L [with the LF $|m_i| = 1/3$, the external ZF in-plane canting angle $\zeta = 60^\circ$ for the S_1, S_2 and $\kappa_1^L(0T) = -1$[Figs. 4a and 3b, I_a^L] to the collinear HF $|S = 1/2, S_{\perp}| = 1 >_x$ spin structure with $m_{ix} = m_{2x} \to -1/3$, $m_{3x} \to 1/6$, $\zeta \to 0$, $\kappa_1^L \to 0$. The $\kappa_1^L < 0$ spin Schemes in Fig. 4a and the $\kappa_1^L(B_z)$ curve explain the correlations between the vector chirality $\kappa_1^L(B_z)$ and the in-plane spin structures in the planar Schemes Ia', Ib', and Ic' for I_a^L of V_3^L in Fig.3b.

In the DM metal trimers on a two-dimensional AFM frustrated kagome lattice, the spin chirality is correlated with the spin canting in the in-plane ZF spin structures [63-65]: the 120$^\circ$ in-plane $q = 0$ spin structures in Fig. 2b in [63] ($D_z < 0$, $D_p = 0$) for the neighboring triangles with the radial spin vectors (arrows) directed from and toward the center of the triangle possess positive (+) chirality [see the planar Ia and IIa structures in Fig. 3b]. The planar spin structures for the neighboring triangles in Fig. 2c [63] for $D_z > 0$, $D_p = 0$ possess negative (−) chirality [see the planar Ia' and IIa' structures in Fig. 3b]. The LF in-plane radial 120$^\circ$-spin structures Ia and IIa with the $|m_{ip}| = 1/3$ arrows in Fig. 3b of the magnetically isolated V_3^R with the LF chirality $\kappa_1^R = 1$ in B_x coincide in the form with the standard in-plane 120$^\circ$-spin $q = 0$ structures in Fig. 2b [63] for the neighboring triangles with the + chirality of a 2D frustrated AFM+DM kagome lattice ($D_z < 0$, $D_p = 0$). The LF in-plane 120$^\circ$-spin structures Ia' and IIa' with the same $|m_{ip}| = 1/3$ arrows (Fig. 3b) of the isolated V_3^L with LF $\kappa_1^L = -1$ in the transverse B_x coincide in the form with the in-plane 120$^\circ$-spin
structures in Fig. 2c [63] for the neighboring triangles with the negative (−) chirality of the AFM+DM kagome lattice.

The difference in the correlations between the planar spin structures and the vector chirality in the cases of the magnetically isolated V_3^R, V_3^L, H_{DM}^z triangles in transverse fields B_x, B_y (Figs.3-4) in comparison with that for the triangles [63] of the AFM+DM 2D kagome lattice is the following: i) the LF in-plane 120°-spin structures Ia and Ila [Ia' and Ila'] of Fig. 3b for maximum positive $\kappa_1^R = 1$ [negative $\kappa_1^L = -1$] are obtained only in the small positive or negative B_x, ii) the spin structures and the κ_1^R [κ_1^L] field behavior are different in the field $B_x \perp Z$ and $\kappa_{R(L)}(B_z)$ in $B_z \parallel Z$, iii) the in-plane spin structures of V_3^R, V_3^L significantly depend on the value, direction and sign of the applied transverse field B_x and B_y [the $[\zeta,m_y]$ spin-canting in Figs. 3b and 3c], and iv) the vector spin chirality $\kappa_{R(L)}^l$ $||Z$ is characterized not only by the sign (+ or −) but also by the κ_1^R [κ_1^L] values, which correlate with the in-plane opposite spin fluctuations m_{1y}, m_{2y} of the S_1, S_2 spins in the planar spin structures in Figs. 3a and 4a. The scalar chirality is equal to zero for the in-plane spin structures in Figs. 3-4 in transverse field, as in the case of the planar structures of the AFM kagome lattice [36].

Fig. 4b shows the joint change of the vector chirality $\kappa_1^R(B_x)$ and the S_{12} contributions to the GS 1^R of V_3^R in B_x for the H_{DM}^z model. The GS wavefunction $\Phi_0^x(B_x) = \Phi_1(S_{12} = 1)$ in Fig. 4b represents the mixture of the $\Omega_+ [\kappa_1^R(B_x) = 1]$ and $\Omega_- [\kappa_1^L(B_x) = -1]$ states, characterized by $\kappa_1^R = 1$ and $\kappa_1^L = -1$, and the corresponding LF in-plane $n_i(Ia)$ and $n_z(ia')$ structures in Fig. 3b, $\Phi_1(S_{12} = 1) = n_1\Omega_+(1) + n_2\Omega_-(1)$. The $\Omega_-(1)$ [$\Omega_+(1)$] state of the right chirality dominates in the LF Φ_0^x [Φ_0^l] state and the LF 1. II HF states. In Fig 4b, the $\Phi_1(S_{12} \rightarrow I)$ wavefunction of 1^R is also shown also in the S_{12} representation, $\Phi_1(S_{12} \rightarrow I) = C_i\Lambda_.(S_{12} = 1) + iC_2\Lambda_.(S_{12} = 0)$. The LF maximum $\kappa_1 = \kappa_\Omega = 1$ corresponds to the same contributions of the $\Lambda_.(S_{12})$ states with $S_{12} = 1$ and $S_{12} = 0$ to the GS Φ_0^x, Fig. 4d (Φ_{l}). The HF B_x in Fig. 4b forms the state 1^R characterized by $S_{12} = 1$ [$m_{1x} = m_{2x} = -1/3$, $m_{3x} = 1/6$ (Fig. 3b, Ic)], and the 1^R state with $S_{12} = 0$ [$m_{3x} \rightarrow -1/2$ $m_{1y} = m_{2y} \rightarrow 0$ (Fig. 3b, IId)]. On the other hand, these pure Heisenberg states in HF B_x, characterized by $S_{12} = 1$ (and $S_{12} = 0$), correspond to $\kappa_{l,\Omega} = 0$. The GS vector chirality $\kappa_1^R(B_x) = n_1^2 - n_2^2 = 2|C_i||C_2| = |d_1|/\sqrt{d_1^2 + h_x^2}$ is reduced to zero $\kappa_1 \rightarrow 0$ at HF $B_x >> 2\Delta_{DM}$ in the H_{DM}^z model, Figs. 4a and 4b, $\kappa_\Omega = \kappa_1$, 129
\(\kappa_{\text{III}} = \kappa_{\text{IV}} = -\kappa_1 \). At the intermediate fields, the \(I^R \) and \(II^R \) states are the mixture of the states characterized by \(S_{12} = 0 \) and \(S_{12} = 1 \) (and \(\kappa^R = 1 \) and \(\kappa^\perp = -1 \)).

5. Spin chirality and polarization of \(V_{3x}^{R(L)} \) with the \(D_x \) coupling in transverse magnetic field

The in-plane \(D_x \) spin-mixing in the GS \([\Phi_{1x}(S_{12} = 1)] \) of \(V_{3x}^{R(L)} \) in \(B_x \) (Fig. 1) determines the spin chirality, canting and KNB polarization \(\mathbf{P} \). In Fig. 5 \((B_x > 0)\), we depict the field-\(B_x \)-dependence of the vector chirality \(\kappa_{N}^{R(L)}(B_x) \) of the lowest \(N = I, II, III \) states (Fig. 1) of \(V_{3x}^{R(L)} \) with the \(D_x \) coupling in comparison with the GS \(\kappa_{Nz}^{R(L)}(B_x) \) in the field \(B_x \parallel Z \) and the KNB polarization \(P_{1}^{R(L)} = P_{1}^{R(L)}(B_x) \). There is no correlation between \(P_{N}^{\perp}(B_x) \) and zero scalar chirality \(\chi_{N}^{\perp}(B_x) = 0 \) in transverse \(B_x \perp Z \). Figure 5 shows the \(B_x \)-field dependence of the right (left) vector chirality \(\kappa_{1}^{R(L)}(B_x) [\kappa_{1}^{L}(B_x)] \) of GS \(I_{1x}^{R}[I_{1x}^{L}] \) and \(\kappa_{II}^{R}, \kappa_{III}^{R} [\kappa_{II}^{L}, \kappa_{III}^{L}] \) of the excited \(II_{x}^{R} \), \(III_{x}^{R} [II_{x}^{L}, III_{x}^{L}] \) states of \(V_{3x}^{R(L)} \) and the KNB polarization \(P_{1}^{R(L)} \) in transverse field \(B_x \).

![Graph showing vector chirality and polarization](image)

Fig. 5 The vector chirality \(\kappa_{N}^{R(L)} \) of the lowest states of \(V_{3x}^{R(L)} \) and the KNB polarization \(P_{1}^{R(L)} \) in transverse field \(B_x \).

of \(V_{3x}^{R(L)} \) in Fig. 1. The GS vector chirality \(\kappa_{1}^{R(L)}(B_x) \) for \(0 < B_x < 4T \) in Fig. 5 coincides with that in Fig. 4a of the \(H_{DM}^{x} \) model. For \(B_x > 4T \), the \(\kappa_{1}^{R(L)}(B_x) \) decreases to zero at avoided LC field \(B_{AC} \). At the same time, the chirality \(\kappa_{II}^{R(L)} \) of the first ES \(II_{x}^{R(L)} \) which does not exhibit the \(D_x \) spin-mixing (Fig.1), has the same field dependence (gradual decrease) in Fig. 5 as \(\kappa_{1}^{R(L)} = \kappa_{II}^{R(L)} \) in the \(H_{DM}^{x} \) model in Fig. 4a. Small increase of the GS \(P_{1}^{R(L)} \) for \(0 < B_x < 4T \) is accompanied with the large decrease of \(\kappa_{1}^{R(L)} \) from the ZF maximum \(\kappa_{1}^{R(L)} = \pm 1 \) to \(\kappa_{1}^{R(L)}(4T) = +(-)0.16 \) in Fig. 5. At the same time, the change of
the small κ_R^{RL} chirality at B_{AC} is accompanied by maximum of the KNB $P_1^{RL}(B_x)$, Fig. 5, $\kappa_1^{RL} = +(-)0.06$ at B_{AC}. The field B_x^\pm of The maximum KNB $P_1^{RL} |_{\text{max}}$ at B_{AC}^\pm is accompanied by the maximum of differential chirality, $d\kappa_i / dB_x$ and magnetic moment $[d\mu^i / dB_x]$. There is no correlation between constant small P_1^{RL} of Π_x^{RL} (Fig. 2) and the chirality κ_Π^{RL}, which decreases smoothly from ZF $|\kappa_\Pi|$ $=$ 1 to HF $\kappa_\Pi = 0$, $|\kappa_\Pi| > |\kappa_1|$ for $B_x > B_{AC}^\pm$ in Fig. 5. The chirality κ_Π^{RL} $[\kappa_\Pi^{RL}]$ of the S=3/2 state V is equal to zero for $B_x < 5T$. Then, for $B_x > 5T$, κ_Π^{RL} tends to κ_Π^{RL} in Fig. 5, when $\kappa_1^{RL} \to 0$. Field dependences $P_1^{RL}(B_y)$ and $\kappa_1^{RL}(B_y)$ in $B_y \parallel Y$ have the same forms as that in Fig. 5 for $B_x \parallel X$ in spite of different in-plane spin structures in Figs. 3b, 3c (in-plane isotropy), $\chi(B_y) = 0$.

6. Spin canting and avoided level crossing in V_3 with DM(x) mixing in transverse magnetic field. A. Magnetic field $B \parallel X$

To establish relationships between the polarization, toroidal moment and the spin canting and fluctuations in transverse field, Fig. 6a shows the field induced change of the in-plane $m_{iz}^{(R)}$ and out-of-plane $m_{iz}^{(\perp)} = m_{iz}^{(R)}$ projections, $m_{iz} = \langle \hat{\Phi}_{iz}^{(R)} | \hat{S}_{iz}^{(R)} | \hat{\Phi}_{iz}^{(R)} \rangle$, $n=x,y,z$, of the individual spins S_i of the ground state $\Phi_{iz}^{(R)}(S_{iz} = 1)$ in positive B_x $D_z = D_x = \pm 0.5K$, $D_y = 0$, $J = 4.8K$. The spin structures of the DM model with the D_x coupling differs from the only in-plane spin structures in Figs. 3, 4 of the H_{DM} model by the appearance of the significant out-of-plane (Z) spin fluctuations, $m_{iz}^{(R)} = m_{iz}^{(\perp)} = -m_{iz}^{(R)} / 2$. The $m_{1x}^{(R)} = m_{2x}^{(R)}$ and $m_{3x}^{(R)}$ values of GS $I_1^{RL}(B_x)$ correspond to intermediate spin $S_{iz} = 1$ in HF B_x: $m_{1x}^{(R)} \to 1/6$, $m_{2x}^{(R)} = m_{3x}^{(R)} \to -1/3$, $M_{iz} \to -1/2$, $S_{iz} = 1$. The $m_{iz}^{(R)} = m_{iz}^{(\perp)}$ and $m_{iz}^{(R)}$ values of Π_x^{RL} in Fig. 1 correspond to $S_{iz} = 0$ in HF B_x: $m_{iz}^{(R)} \to -1/2$, $m_{iz}^{(R)} = 0$, (Fig. 6c) $M_{iz} \to -1/2$, $M_{iz} = 0$. The spin projections change the sign in the negative field B_x. The pictures of the spin canting θ_i for S_i, S_2 and S_3 in GS I_1^{R} and I_1^{L} are shown schematically in the Schemes 1) for $\kappa_R > 0$ and 2) for $\kappa_L < 0$ in Fig. 6a, $tg\theta_{iz}^{RL} = m_{iz}^{(R)} / m_{iz}^{(L)}$, $k = 1,2,3$.

Figure 6b shows the KNB polarization $P_1^{R}(B_x)$ $[P_1^{L}(B_x)]$ of the I_1^R $[I_1^L]$ GS and the spin canting schemes 1a) $\{2a\}$ for $B_x > 0$ and 1b) $\{2b\}$ for $B_x < 0$ at $B_{AC} \{-B_{AC}\}$ with reversing B_x along the X-axis. Maximum P_1^{RL} in Fig. 6b corresponds to the maximum out-of-plane $m_{iz}^{(R)}$ fluctuations and maximum change of the in-plane projections at B_{AC} in Fig. 6a. The out-of-plane fluctuations and change of the in-plane projections of S_i result in the significant out-of-plane and in-plane canting of the S_i, S_2 and S_3, as shown in Figs. 6 and 7. Similar field behavior of the GS m_{iz}^{R} and $-m_{iz}^{L}$ of V_3^{R} and V_3^{L} in the vicinity of B_{AC} in Fig. 6a explains the same (in magnitude) field dependence of $P_1^{R}(B_x)$ and $P_1^{L}(B_x)$ for $B_x > 3T$ in Figs. 2 and 6b, despite grate
The difference between $P^{R}(B_z)$ and $P^{L}(B_z)$ in the field B_z PZ (Figs. 2, 9 [32]). The $m_{m}^{R(L)}$ spin projections and the Schemes of the S_{i} (S'_{i}) canting in the excited I^{L}_{x} (III^{L}_{x}) state of V^{L}_{x} are shown in Fig. 6c. The spatial Scheme 1 shows the S_{i} spin canting for III_{x}^{L} (see Fig. 7a) opposite to that for S_{i} in GS I^{L}_{x} in the Scheme 2 of Fig. 6a.
Fig. 6 a) The in-plane and out-of-plane m_{m}^{LR} spin projections, the schemes of the S_1 spin canting in transverse field B_x. b) The spatial schemes 1a), 1b) and 2a), 2b) of the canting of the S_1 spins in GS of V_{3x}^{R} ($\kappa_{R} > 0$), V_{3x}^{L} ($\kappa_{L} < 0$) at B_{AC}, $-B_{AC}$ and corresponding polarization $P_{LR}^{R/L}(B_x)$ in the KNB model and the toroidal moments $T_{y}^{R/L}(B_x)$ in transverse field $B_x \parallel X$. 1a) - $B_x > 0$; 1b) - $B_x < 0$. c) The $m_{m}^{R/L}$ spin projections and the spatial Scheme 1) [2)] of the S_1 spin canting in the excited III^L (II^L) state of V_{3x}^{L}, $B_x > 0$.

The out-of-plane m_{1z}^{LR} and $m_{2z}^{LR} = m_{1z}^{LR}$ spin fluctuations of the opposite signs at the apices 3 and 2, $m_{3z}^{LR} = -2m_{2z}^{LR}$, in Fig. 6a, result in an appearance of the in-plane toroidal moments $T_{y}^{LR}(B_x)$ in Fig. 6b show the D_x-induced in-plane toroidal moment $T_{y}^{LR}(B_x)/r = \mu_B (m_{3z}^{LR} - m_{1z}^{LR})$ of GS I_x^{R} (I_x^{L}) GS; $T_{y}^{LR}(B_x) || Y$, $T_{y}^{LR}(B_x) \bot B_x$, $T_{y}^{LR}(B_x) \bot P_{z}^{LR}(B_x)|| Z$, as shown in the Schemes 1a), 2a) for $\kappa_{R} > 0$ and 1b), 2b) for $\kappa_{L} < 0$. The in-plane $T_{y}^{LR}(B_x)$ reaches the maximal value at ALC field B_{AC}^{y}, where $(m_{3z}^{LR} - m_{1z}^{LR})$ possesses the maximum. The $T_{y}^{LR}(B_x)$ changes the direction in the negative field, $T_{y}(B_x) = -T_{y}(-B_x)$, Fig. 6b.

For $B_x > 0$, the LF I_x^{R} (I_x^{L}) represents the positive (negative) chiral state with the small D_x admixture of the $|3/2, M_x = -3/2>_x$ and $|3/2, M_x = 1/2>_x$. The $|3/2, M_x = 1/2>_x$ contribution to the GS is negligibly small for $B_x > 3T$ and can be neglected. In this approximation, the KNB $P_{x}^{R}(h_x)$, toroidal moment $T_{y}^{R}(h_x)$, spin chirality $\kappa_{L}^{R}(h_x)$, $\kappa_{L}^{R}(h_x)$, and the projections M_{I_x}, $M_{I_{II}}$ of the total S_1, S_2 spins of the I_x^{R}, I_{II}^{R}, have the following form for $B_x > 3T$

$$P_{x}^{R}(h_x) \approx 9AD_x(1 + h_x / e_x^2) / 64\Delta_x = 3\sqrt{3}\text{sign}(D_x) A m_{3z}^{I} / 4,$$

(9)
\[T^R_r(h_x) \approx 3\sqrt{3}g\mu_B |D_x| (1 + h_x / \varepsilon_x^0) / 32 \Delta_x = 3\mu_B \mu_3 / 4, \]
\[\kappa^R_{\parallel}(h_x) \approx \gamma (1 + \varepsilon_x / \Delta_x) \Delta_0 / \varepsilon_x^0, \quad \kappa^R_{\perp}(h_x) \approx \Delta_0 / \varepsilon_x^0, \quad \kappa_{\parallel}(h_x) = \pi / \varepsilon_x^0, \quad \chi_{\parallel}(h_x) = \pi / \varepsilon_x^0, \]
\[M_{\parallel} = -\gamma_i(h_x / \varepsilon_x^0) (1 + \varepsilon_x / \Delta_x) + 3(1 - \varepsilon_x / \Delta_x)] = -\gamma_i[\frac{\gamma_i}{\pi} \left(1 - \kappa_{\parallel}^2 - 3(1 - \frac{\gamma_i}{\pi})\right)], \]
\[M_{\perp} = -\gamma_i / 2 + \varepsilon_x^0 = -\gamma_i / \sqrt{1 - \kappa_{\parallel}^2}; \quad \mu_{\parallel} = 2\mu_B M_{\parallel}; \]
\[\varepsilon_x = \sqrt{\Delta_x^2 + h_x^2}, \Delta_x = \varepsilon_x^2 + 2D_x (1 + h_x / \varepsilon_x^0) / 64)^{1/2}, \varepsilon_x = \frac{1}{4} (3J + 2\varepsilon_x^0 - 6h_x), \]

where \(\Delta_0 = \sqrt{3} / 2 \), (\(M_{\parallel} = M_{\parallel} = 0, M_{\perp} = M_{\perp} = 0 \)). Eq. (9) describes the field increase of the KNB polarization \(P_1^R(B_x) \), the maximum \(P_1^R(B_{AC}^\perp) \) at \(B_{AC} \), and subsequent decrease of \(P_1^R \) at HF in Fig. 2. \(P_1^R(B_{AC}^\perp) \) max; 3AD_x \sqrt{2} / 8 |D_x| \ in the case \(D_y = 0 \) describes the relation \(P_1^R(B_{AC}^\perp) \) max / P_1^R(B_{AC}^\perp) max = \sqrt{2} between the maximum magnitudes of the KNB \(P \) in the field \(B_z \), PZ [32] and \(B_x \perp Z \) (see Fig. 8). Both \(P_1^R(B_x) \) (9) and \(T_1^R(B_x) \) (10) are proportional to the out-of-plane \(m_{\parallel} \) spin fluctuation as shown in Figs. 6a, 6b. Equation (11) describes the field dependence of the positive chirality \(\kappa^R(B_x) \) of \(\mathbf{I}_x^L \) and its vanishing after \(B_{AC}^\perp \) in Fig. 5 and the smooth decrease of \(\kappa_{\parallel}^R(B_x) \) of \(\mathbf{II}_x^L \) without vanishing at \(B_{AC}^\perp \) (Fig. 5). The \(M_{\parallel} \) (12) \(M_{\parallel} = \sum m_{\parallel} \) changes from the ZF \(M_{\parallel} = 0 \) to \(M_{\parallel} = -1 / 2 \) and then to \(M_{\parallel} = -3 / 2 \) in accordance with Figs. 6a and 1, whereas the \(M_{\parallel} \) changes from ZF \(M_{\parallel} = 0 \) to HF \(M_{\parallel} = -1 / 2 \). Eq. (12) shows the non-linear correlation between the GS magnetic moment \(\mu_{\parallel}(B_x) = 2\mu_B m_{\parallel} [M_{\parallel}] \) and the spin chirality \(\kappa^R(B_x) \) in transverse field. The non-linear behavior of the static magnetization \(\mu \) of \(V_3 \) ring of \(V_{15} \) SMM in \(B \perp [20] \) was explained [25, 26] in the \(D_x \), \(D_y \) model.

Fig. 7a shows the change of the spin canting of the \(S_1, S_2, S_3 \) spins in GS \(\mathbf{I}_x \) (Schemes 1,2) and second ES III-III \(\mathbf{I}_x \) (Schemes 3,4) of the avoided LC structure of \(V_3 \) in transverse field \(B_x \). The field-induced \(\{ \theta_1, \zeta_1, M_1; \theta_2, \zeta_2, M_2; \theta_3, M_3 \} \) spin-canting includes the change of the out-of-plane \(\theta_1 = \theta_2 \) (for \(S_1, S_2 \)), \(\theta_3 \) (for \(S_3 \)) and in-plane \(\zeta_1 = \varphi(I) \) (for \(S_1, S_2 \)) spin canting angles, which is accompanied by the significant variations of the value of the \(M_3 \) projection of \(S_3 \) and \(M_1 \) projection on the \(XZ \) plane of the \(S_1 (S_2) \) spin of GS \(\mathbf{I}_x \) of \(V_3 \), in accordance with Fig. 6a.

The \(S_i \)-arrows in Fig. 7a schematize the directions and the magnitudes of \(S_i = \ll S_i \gg \): the lengths of arrows and the numbers among them denote the magnitudes of projections \(M_3, M_1 \) on the \(XZ \) plane and corresponding \(B_x \), respectively. Large out-of-plane spin fluctuations \(m_{i z} = m_{2 z} \) and \(m_{3 z} = -m_{1 z} \) (Fig. 7a) of the opposite signs for \(S_1, S_2 \) and \(S_3 \), respectively, and the change of the in-plane \(m_{i p} = m_{2 p} \) and \(m_{3 p} \) projections (Fig. 7a) lead to a significant out-of-plane field-dependent canting on the angles \(-\theta_1(I), (\theta_2 = \theta_2) \), and \(+\theta_3(I) \) for the \(S_1, S_2 \) and \(S_3 \) spins in GS \(\mathbf{I}_x \) in Figs. 7a and 7c, \(t g \theta_1 = m_{i z} / m_{i p}, t g \theta_2 = m_{i z} / m_{i p} \). The \(S_1, S_2 \) spins of \(\mathbf{I}_x \) rotate around the 1,2
apices (canting angle $\theta_1 = \theta_2$) up to the maximum $\theta_1 = \theta_1^\prime$; 27° at B_{AC} and then rotate back that is accompanied with the change of the in-plane $\zeta = \varphi(I)$ canting angle (Figs. 7a-7c) and increase of $M_1(= M_2)$ from LF $M_1 = +0.333$ to HF $M_1 = M_2 = -1/2$.

The Scheme 4) in Fig. 7a show the simultaneous opposite dynamics of the $S_i^0(S_2^0)$ spins in the ES III, with the accompanied decrease of $M_1 = M_2 = -1/2$ [$S_{ex} = 3/2$] to HF $M_1 = M_2 = -1/3$ [$S_{ex} = 1/2$]. The $M_j^i(B_x)$ projection of S_j in III (Scheme 3) exhibits the clockwise non-linear ξ_3-rotation in the XZ plane around the vertex 3 at almost $\xi_3 \approx 180^\circ$, which is opposite to the θ_3-rotation of M_j in the Scheme 1 for I^L_x, $\eta_3(B_{AC}^x) = \pi - \xi_3(B_{AC}^x) = \theta_3(B_{AC}^x)$ [Figs. 7a, 7c]. This $M_j(B_x)$ rotation is accompanied with the reduction of M_3 from the ZF $M_{3z} = -1/2$ [$S_{ex} = 3/2$] to the HF $M_{3z} = +1/6$ [$S_{ex} = 1/2, S_{12} = 1$]; $M_j(B_{AC}^x) = M_j(B_{AC}^x)$. The field

![Fig. 7a](image-url)
Fig. 7. Field-induced $[\theta_1, M_\perp]$ spin canting in V_{3x}^L with the D_\perp coupling in transverse field B_x.

a) The schemes of the field-induced out-of-plane spin canting and an accompanying increase of the M_3 (the Scheme 1) and the $M_{1\mid XZ}$ projection (2, $B_x > 0$, and 4, $B_x < 0$). $B_x > 0$; a) The schemes of the field-induced out-of-plane θ_1 and θ_I spin canting and an accompanying increase of the M_3 (the Scheme 1) and the $M_{1\mid XZ}$ projection (2, $B_x > 0$, and 4, $B_x < 0$). $B_x > 0$; b) The correlations between the vector chirality $R(L)_{ix}$, the in-plane m_{ix} spin fluctuations and ζ-canting of the S_I, S_2 and polarization $P_{1R(L)}^{RI}(B_x)$. c) The field (B_x) dependence of the angles of the out-of-plane $\theta_1(I)$, $\theta_I(I)$, $\xi_{3}(III)$, $\xi_3(III)$, $\eta_3(III)$ and in-plane ζ ($= \varphi_1(I)$), φ_{II}, φ_{III} spin canting for the Π^L_{x}, Π^L_{II}, Π^L_{III} states. d) The schemes of the spin canting, polarization, toroidal moments and spin chirality of the GS Π^L_{x} and Π^L_{II}, Π^L_{III} ES of the avoided LC structure in transverse field B_x. The spin structures 1), 2) and 3) are shown for the bottom (at Π^L_{x}), center (Π^L_{II}), and top (Π^L_{III}) of the tunneling gap Δ_{tx} at ALC field B_{AC}^\perp.
induced spin dynamics for the M_1, M_2, and M_3 is in accordance with the $[S_{\chi} = 3/2 \rightarrow S_{\chi} = 1/2]$ spin transition in the III$_x$ of the avoided LC structure in transverse field B_x.

Fig. 7b shows the change of the in-plane spin ζ-canting of the in-plane m_{1p}, m_{2p} projections ($|m_{1p}| = |m_{2p}|$) of the S_1, S_2 vectors and the spin chirality $\kappa^R(x)(B_x)$ of the GS I^R, I^L_x of V^R_{3x}, V^L_{3x} with the D_x coupling in the field B_x. The spin structures in Figs. 7a and 7b differ significantly from the spin schemes in Figs. 3b and 4a in the H^I_{DM} model with $m_{1z} = 0$ due to the large $m_{1z} = m_{2z}$ and $m_{3z} = -2m_{1z}$ out-of-plane spin fluctuations in GS with the maximum Z-projections at B^C_{AC}, Figs. 6a and 7a. In transverse field $B_x \perp Z$, the field-dependent vector spin chirality $\kappa_1(B_x) [\kappa_1(B_x) \parallel Z]$ is not only the quantum characteristics of GS I^R, I^L_x, but also has a direct physical meaning: $\kappa_1(B_x)$ describes the in-plane spin fluctuations $m_{1y} (m_{2y})$ and the $\zeta(B_x)$-canting (rotation) of the S_1, S_2 and can be directly accessed by the measurements of the in-plane canting angle $\zeta(B_x)$ of S_1, S_2 in the increasing field B_x (Fig. 7b) in the NMR and polarized NS experiments on the single crystal V_3 system.

Fig. 7c shows the field (B_x) dependence of the simultaneous change of the angles of the out-of-plane $\theta_1(I), \theta_2(I), \phi_1, \phi_2$, ϕ_1 canting for S_1 (S_2) and S_3 for the I^L_x, II^L_x, III_x states of V^L_{3x} ($\kappa^L_{1} < 0$). Figs. 6a, 7a-7c describe the $[\theta, \phi, \eta, \zeta, \phi_1, M_1]$ spin-canting of the individual S_i spins in the field B_x. The dynamics of the spins in GS I^R, I^L_x in the transverse field $B_x \perp Z$ significantly differs from that in the field $B_z PZ$[31, 32].
Fig. 7d shows the three-level avoided LC structure in the vicinity of the \(\Delta \) tunneling gap at the ALC field \(B_{AC}^x \) of \(V_{3x}^l \): the ground \(I_x^l \) state \([\Phi_{ir}(S_{12} = 1)]\) which describes the \([|S_x^1 = 1/2 >_x, |S_x^2 = 3/2 >_x] \) transition from the spin-frustrated to the spin-collinear state in \(B_x^l \), first excited \(\Pi_x^l \) \([\Phi_{ir}(S_{12} = 0)]\) linear level and the second excited \(\Pi_x^l \) \([\Phi_{ir}]\) state, which describes the \([|S_x = 3/2 >_x, |S_x = 1/2 >_x] \) spin transition. Fig. 7d also shows the \(S_1, S_2, S_3 \) spin-canting schemes 1) and 3) in the bottom \((I_x^l)\) and top \((\Pi_x^l)\) of the tunneling gap \(\Delta \) at \(B_{AC}^x \), respectively, as well as the spin scheme 2) of the ES \(\Pi_x^l \) at the center of \(\Delta \). The maximum GS KNB \(P_{ir}^l(B_x^l) \) and the in-plane \(T_{iy}^l(B_x^l) \) at \(B_{AC}^x \) are shown by the vertical \((|| Z)\) and horizontal \((|| Y)\) solid arrows, respectively. The \(S_1, S_2, S_3 \) canting scheme 3) for the \(\Pi_x^l \) state on the top of the gap \(\Delta \) is opposite to that in the Scheme 1) of \(I_x^l \), that results in the opposite sign of the maximum \(P_{ir}^l(B_x^l) \) and \(T_{iy}^l(B_x^l) \) of \(\Pi_x^l \) in comparison with \(P_{ir}^l(B_x^l) \) and \(T_{iy}^l(B_x^l) \) of GS. The opposite spin structures in the Schemes 1) and 3) in Fig. 7d explains different signs of the \(P_{ir}^l(B_x^l) \) and \(P_{ir}^l(B_x^l) \) in Fig. 2. All three spatial spin Schemes of the states \(I_x^l, \Pi_x^l, \Pi_x^l \) of the gap \(\Delta \) at \(B_{AC}^x \) in Fig. 7d are characterized by the intermediate spins \(S_{12} \), small vector chirality and zero scalar chirality \(\chi_N(B_x^l) = 0 \). The spin Scheme 2) of the first ES \(\Pi_x^l \), which corresponds to \(S_{12} \rightarrow 0 \) (see also \(\Pi_x^l \) in Fig.3b), and \(\kappa_{ir}^l(B_{AC}^x) = -0.12 \), very small out-of plane spin canting due to very weak ZF DM(x) admixture that leads to the small \(P_{ir}^l(B_x^l) \) (Figs. 2) and \(T_{iy}^l(B_x^l) \). The spin chirality \(\kappa_{ir}^l(B_x^l) \) of the spin-frustrated GS \(I_x^l \) \((S_{12} = 1)\), which tends to zero at HF \(B_x^l > B_{AC}^x \), is transferred by the \(D_x \) coupling in increasing field to the to the \(\Pi_x^l \) state \((S_{12} = 1)\), which was spin-collinear \((S = 3/2, \kappa = 0)\) initially, that results in \(\kappa_{ir}^l(B_{AC}^x) = \kappa_{ir}^l(B_{AC}^x) = -0.06 \) at \(B_{AC}^x \), \(\kappa_{ir}^l + \kappa_{ir}^l = \kappa_{ir}^l \). The in-plane and out-of plane dynamics of the spin canting in the states of the avoided LC structure of \(V_{3x}^l \) in transverse field \(B_x \perp Z \) (Fig. 7) differ significantly from that in the field \(B_z PZ \) [31, 32].

Figure 8 shows the comparison of the field dependence of the KNB polarization \(P_{z}^{R(l)}(B_z) \) and \(P_{z}^{R(l)}(B_z) \) of \(V_{3x}^l \) in a single-crystal sample at temperature \(T = 0.1 K \), when essentially only the GS is temperature populated, \(B_z > 0 \). In the field \(B_z PZ \), the polarization \(P_{z}^{l}(B_z) \) (open triangles) is close to zero up to LC field, \(|B_z| > |B_{A1}^x| \), for \(V_{3x}^l \) with GS \(I_x^l \) \((\kappa_l^l = -1)\) [32]. The maximum \(P_{z}^{max}(B_{A1}^x) \) of the \(P_{z}^{l}(B_z) \) of \(V_{3x}^l \) at the ALC \(B_z \)-field \(B_{A1}^x \) smaller in magnitude than the maximum \(P_{z}^{max}(B_{A1}^x) \) of the \(P_{z}^{l}(B_z) \) polarization of \(V_{3x}^l \) with GS \(I_x^l \) \((\kappa_l^l = 1)\). The maximum of the polarization \(P_{z}^{l}(B_z) \) at transverse "resonance" field \(B_{AC}^x \), \(P_{z}^{max}(B_{AC}^x) \), is larger in value than the maximum \(P_{z}^{max}(B_{A1}^x) \) at \(B_{A1}^x (B_z PZ) \) for \(V_{3x}^l \). At the same time, the maximum polarization \(P_{z}^{max}(B_{AC}^x) \) at \(B_{AC}^x (B_z \parallel X) \) is smaller than the maximum polarization
The rotation of the fixed applied field \(B_{z1} = B_{A1}^{\prime}\) in the \(ZX\)-plane \((B_{z1} P Z \rightarrow B_{1x} \parallel X, \ |B_{1x}| = |B_{z1}|)\), results in the reduction \(\Delta P^{R}_{z}(B_{z2} \rightarrow B_{1x})\) \([-46\%\ of\ P_{max}^{L}(B_{A1}^{\prime})]\) of the polarization. For \(V^{L}_{3x}\), the polarization \(P_{max}^{L}(B_{z1})\) does not change practically the value under this rotation. The rotation \(B_{2z} \parallel X \rightarrow B_{2z}, P Z\) of the direction of the fixed transverse "resonant" field \(B_{2x} = B_{AC}^{x}\) for the \(P^{L}_{z}(B_{x})\) results in a significant decrease \(\Delta P^{R}_{z}(B_{2x} \rightarrow B_{2z})(-80\%\ of\ P_{max}^{L}(B_{2x}))\) of the magnitude of \(P_{z}^{L}\) of \(V^{L}_{3x}\) while the same rotation leads to \(-40\%\) increase \(\Delta P^{R}_{z}(B_{2x} \rightarrow B_{2z})\) of \(P_{z}^{R}\) of \(V^{R}_{3x}\).

Toroidal moments \(T\) in Fig. 8 change the value from the maximal \(T_{y}^{R(L)}(B_{2x})|_{max}\) \(Y\) value at the transverse ALC field \(B_{2x} = B_{AC}^{x}\) to zero value \(T(B_{z}) = 0\) under the field rotation \(B_{z1} \parallel X \rightarrow B_{z2}, P Z\). The field dependence of the polarization \(P^{R(L)}\) in the KNB model and the toroidal moments \(T^{R(L)}\) show strong anisotropy: \(P^{R(L)}\) and \(T^{R(L)}\) differ significantly in the fields \(B \parallel Z\) and \(B \perp Z\).

In transverse field \(B_{y}, P Y\), the \(V^{R}_{3x}, V^{L}_{3x}\) systems \([D_{z} = D_{x} = m0.5K, D_{y} = 0, J = 4.8K]\) possess the \(m_{m}(B_{y})\) field dependence and the in-plane spin structures, which correspond to GS with \(S_{12} = 0\) (Schemes \(Ia - Ie\) \([Ia^{\prime} - Ie^{\prime}]\) in Fig. 9a) mixed with the \(\{3/2,M = -3/2\}_y\) by the \(D_{x}\) DM coupling. Figure 9a \((B_{y} \geq 0)\) shows the
transformations of the in-plane spin structures, total spin projections $M_y = M_y^I, M_y = M_y^R$, individual in-plane m_{ip} spin projections, canting angles ϕ and spin chirality of $V_{3s}^R (V_{3s}^L)$ systems $I, II (I', II')$ with positive (negative) spin chirality of the GS $I (I')$ with $S_{12} = 0$, and first ES $II (II')$ with $S_{12} = 1$.

Fig. 9b shows the in-plane $m_{ix}, m_{iy}, m_{ip} = m_{2p}$, the out-of-plane m_{iz}, m_{2z}, and total $|M_1| = |M_2|, M_3$ spin projections, polarization $P_{z}^B (B_y)$, toroidal moment $T_n^+ (B_y)$, the Schemes 1-3 of the out-of-plane (1, 2) and in-plane (3) spin canting, and the change of the in-plane ϕ and out-of-plane η spin canting angles for GS of V_{3s}^L. The out-of-plane spin fluctuations m_{iz} (solid curve) and $m_{2z} = -m_{iz}$ (dash) of the opposite signs reach the maximum at B_{AC}^\ast, $m_{3z} = 0$. The $m_{iy} = m_{2y}$ projections (short-dash-dot) change the value from the low-field $m_{iy} = +1/6$ to the high-field $m_{iy} = -1/2$, that corresponds to the rotations of the S_1, S_2 spins in the YZ plane (Scheme 2) around the 1,2 apices at the angle $\eta \approx 2\pi$ accompanied by the in-plane ϕ-canting and the change of the $|M_1| = |M_2| (solid)$ and M_3 projections. The Scheme 2 shows this rotation of the $M_1 |_{YZ}$ projection on the YZ plane (dotted curve in Fig. 9b). The lengths of the arrows and the numbers among them in the Scheme 2 show the values of $M_1(B_y) |_{YZ}$ and the corresponding B_y values, respectively. At HF ($B_y > 5 T$), the $M_1(B_y) |_{YZ}$ value coincides with the total $|M_1|$ projection of S_1 in Fig. 9b. The change of the opposite m_{iz} and m_{2z} out-of-plane spin fluctuations, shown by the dash-dotted vertical arrows at the apices 1 and 2 in the spatial Scheme 1 in the vicinity of LC field B_{AC}^\ast, results in
Fig. 9b

The in-plane toroidal moment $T_{tx}(B_y) = \frac{1}{2} g \mu_B \left([r_1 \times S_1] + [r_2 \times S_2] \right) = \frac{1}{2} g \mu_B r m_{ix}$, $T_{tx}(B_y) \perp B_y$, $T_{tx}(B_y) \perp P_{ix}(B_y)$. $T_{tx}(B_y)$ reaches the maximum at B_{AC} since $T_{tx}(B_y) - m_{ix}$. This $T_{tx}(B_y)$ corresponds to significantly different spatial spin structure (Scheme 1 in Fig. 9b) in comparison with that for the field $B_x \parallel X$ (Figs. 6 and 7), however the $T_{tx}(B_y)$ curve coincides with the $T_{tx}(B_y)$ curve in Fig. 6b, $T_{tx}(B_y) = T_{tx}(B_y)$ $T_{tx}(B_y) = \frac{1}{2} g \mu_B \left([r_1 \times S_1] + [r_2 \times S_2] + [r_3 \times S_3] \right) = \frac{1}{2} g \mu_B r (m_{ix} - m_{iz})$. The field dependence $P_{ix}(B_y)$ in $B_x \parallel Y$ with the maximum at B_{AC}^y ($B_{AC}^y = B_{AC}^z$) coincides with $P_{ix}(B_x)$. $P_{ix}(B_x)$ is isotropic in the XY-plane. The toroidal moment of V_{3x}^R, V_{3x}^L with $D_y = 0$ is equal to zero in the field $B_x \parallel Z$, Fig. 8.

7. Toroidal moment induced by the D_y spin mixing in transverse field

The spin structure, spin canting, chirality and polarization strongly depends on the D_x, D_y, D_z and J exchange parameters and the direction of the magnetic field B. It was shown [333] that V_{3y}^R with the D_y coupling [$J = 4.8 K$, $D_z = D_y = -0.5 K$, $D_x = 0$] in magnetic field $B_x \parallel Z$ possesses toroidal moment

$$T_z = \frac{1}{2} \mu_B g \sum_i [r_i \times S_i]. \quad (13)$$
The toroidal moment $T_x(B_z)$, induced by the D_y spin-mixing, increases in an increasing field B_z, reaches the maximum at the ALC field B_{A1}, and then gradually decreases, $T_x(B_z)$ changes the direction in the negative field, $T_x(B_z) = -T_x(-B_z)$ [31, 32]. Fig. 10a shows the field dependence of the in plane m_{iz} projections, the out-of-plane m_{iz} spin fluctuations, the scheme of the spin canting in the (S_1, S_2, S_3) system and the toroidal moment $T_{ix}(B_x)$ for V_{3x} in transverse field $B_x \parallel X$. The D_y coupling results in the large out-of-plane m_{iz} and $m_{2z} = -m_{iz}$ spin fluctuations of S_1, S_2 in the vicinity of B_{AC}^x, which are oriented in opposite directions, as shown in the Scheme 1) in Fig. 10a for $B_x > 0$. The out-of-plane spin fluctuations m_{iz}, m_{2z} reach the maximum magnitude at B_{AC}^x that leads to the large out-of-plane canting angle $\xi_1 (\xi_2)$ and small in-plane canting $\zeta_1 (\zeta_2)$ for the spin $S_1 (S_2)$ at B_{AC}^x in the Scheme 1 in Fig. 10a [\(\xi_1 = -54^\circ, \xi_2 = 54^\circ, \zeta_1 = 3^\circ, \zeta_2 = -3^\circ\)]. The S_3 with the variable $M_z = m_{3z}$ length is directed along the X-axis, $m_{3x} = m_{3y} = 0$. These opposite directions of the S_1, S_2 fluctuations along the Z-axis lead to the anticlockwise twisting spin moment around the X-axis in the ZY plane that, in turn, results in the toroidal moment $T_{ix}(B_x) = \sqrt{3} \mu_B r_0 m_{iz}$, oriented in the plane of the triangle along the X-axis in the Scheme 1 in Fig. 10a. The in-plane toroidal moment $T_{ix}(B_x)$ reaches the maximum magnitude at B_{AC}^x in Fig. 10a. The Schemes 1 ($B_x > 0$) and 2 ($B_x < 0$) of the spin canting in Fig. 10a and the $T_{ix}(B_x)$ curve show that the toroidal moment $T_{ix}(B_x) \parallel X$ changes the direction upon the field B_x reversal. $T_{ix}(B_x) = -T_{ix}(-B_x)$.

In Fig. 10b, the toroidal moments $T_z^{RL}(B_x), T_x^{RL}(B_x)$ and the vector spin chirality $\kappa_z^{RL}(B_x), \kappa_x^{RL}(B_x)$ of V_{3x}, V_{3x}^L in the field $B_x \parallel Z$ and $B_x \parallel X$ at temperature $T = 0.1K$ are compared. The decrease of the positive vector chirality $\kappa_z^{RL}(B_x)$ of V_{3x}^R in the increasing B_x is accompanied by an increase of $T_x(B_x)$, the maximum $T_x(B_{AC})$ at B_{AC}^x corresponds to the maximum of $d\kappa_z/\theta B_x$ at B_{AC}^x. In an increasing filed B_x, the toroidal moment $T_z^R(B_x) \parallel Z$ of V_{3x}^R reaches the maximum magnitude $T_z^R(B_{AC}^x)$ at $B_{iz} = B_{A1}$. The subsequent rotation $B_x \parallel Z \rightarrow B_x \parallel X$ of the fixed $B = B_{iz}$ in the ZX plane results in the rotation and reduction of the toroidal moment T since in Fig. 10b. In increasing B_x, the toroidal moment $T_x^{RL}(B_x)$ reaches the maximum $T_x^{RL}(B_{AC}^x)_{\text{max}}$ at $B_{iz} = B_{A1}^x$. Fig. 10b. The subsequent rotation $B_x \parallel X \rightarrow B_x \parallel Z$ of the fixed field $B = B_{ix}$ in the XZ plane results in the rotation of $T_x^{RL}(B_x) \parallel X \rightarrow T_x^{RL}(B_x) \parallel Z$ of T and an increase (decrease) of $T^R (T^L T^+)$. The left chirality $\kappa_z^{L}(B_x)$ of V_{3x}^L changes the sign at LC field B_{iz}, the right chirality $\kappa_z^{R}(B_x)$ of V_{3x}^R demonstrates significant field dependence, Fig. 10b. Different vector spin chirality $\kappa_z^{L}(B_x)$ and $\kappa_z^{R}(B_x)$ of V_{3x}^L, V_{3x}^R in the field B_x transform into $\kappa_z^{R}(B_x)$ and $\kappa_z^{L}(B_x)$ in transverse B_x, respectively, which have the same form and differ by the sign.
Fig. 10 a) Field dependence of the m_{in} spin projections, spatial schemes of the spin canting and toroidal moments $T_{ix}(B_x)$ for V_{3z} in transverse field $B_x \parallel X$, 1) $B_x > 0$, 2) $B_x < 0$. b) Toroidal moments $T_{ix}^{R(L)}(B_x)$, $T_{ix}^{R(L)}(B_x)$ and the vector chirality $\kappa_{z}^{R(L)}(B_x)$, $\kappa_{x}^{R(L)}(B_x)$ of V_{3x}, V_{3x} in the field $B_z \parallel Z$ and $B_x \parallel X$ at temperature $T = 0.1K$.

8. Conclusion
The inverse DM mechanism of polarization \mathbf{P} [39-41] is the driving force of the polarization $P_z(B_x)$ induced by the D_x coupling in transverse magnetic field B_x in the spin-frustrated V_3 SMM with the out-of-plane and in-plane DM interaction. The D_x induced KNB polarization $P_z(B_x)$ increases non-linearly with increasing field B_x, reaches a maximum at the avoided LC field B_{AC} and then gradually decreases in high fields. The D_x coupling in V_{3x} results also in the field-induced in-plane toroidal moment $T_y(B_x) \parallel Y$ in transverse B_x. The origin of $P_z(B_x)$ and $T_y(B_x)$ is the large out-of-plane spin fluctuations induced by the D_x coupling. The correlations between the polarization, toroidal and magnetic moments, spin chirality and spin canting in transverse field were investigated in detail. The dynamics of the individual S_1, S_2, S_3 spins in the ground and excited states of the avoided level crossing structure in transverse field $B_x (B_x, B_y)$ significantly differs from the spin dynamics in the field $B_x \parallel Z$. The field-induced spin canting in B_x includes large canting of the (S_1, S_2) and S_3 spins in opposite directions which is accompanied by the significant different change of the M_i projections. The coupling between the vector chirality κ and transverse field B_x is non-linear. The scalar chirality is equal to zero in transverse field, $\chi(B_x) = 0$, in spite of the large out-of-plane spin fluctuations of the opposite signs and large spatial spin canting. The vector chirality $\kappa_z(B_x) \{ \kappa_y(B_y) \}$ describes the in-plane canting (rotations) of the S_1, S_2 spins in transverse field $B_x [B_y]$. The D_y coupling in V_{3y} results in the field-dependent in-plane toroidal magnetic moment $T_y(B_x) \parallel X$ in B_x. Under the $B_z \rightarrow B_x$ rotation of the field B in the XZ plane, the polarization \mathbf{P} demonstrates the reduction of the magnitude in the $P_z(B_x) \rightarrow P_y(B_y)$ transition, while the toroidal moment T_y exhibits the $T_z(B_y) \rightarrow T_x(B_x)$ flop. The DM V_3 nanomagnets are the cluster analogs of multiferroics.

Appendix A

In the spin chirality representation, the wave functions of the zero-field double degenerate GS (I, II) of the V_3 trimer in the H_{DM}^i model $(D_p = 0)$ with $D_z < 0$ in transverse field B_x has the form

$$\Phi_{l_k} \{ \Phi_{l_k} \} (D_z < 0) = n_1 \Omega^L_m + [-] n_2 \Omega^R_m,$$ \hspace{1cm} \text{(A1)}

of the mixture of the states $\Omega^L_m = \Omega_m(\kappa_z = -1)$ and $\Omega^R_m = \Omega_m(\kappa_z = 1)$ with positive (right) $\kappa_z = 1$ and negative (left) $\kappa_z = -1$ chirality, respectively, where

$$\Omega_m(\kappa_z = 1) = [u_+ (-1/2) \pm u_+ (1/2)]/\sqrt{2}, \quad \Omega_m(\kappa_z = -1) = [u_+ (-1/2) \pm u_+ (1/2)]/\sqrt{2},$$

$$n_{l_{(2)}} = \frac{1}{2} \sqrt{d_z \pm \sqrt{d_z^2 + h_z^2}}.$$ \hspace{1cm} \text{(A2)}
The eigenfunctions \(u_1 = u_-(M_S = -1/2) \), \(u_2 = u_+(1/2) \), \(u_{11} = u_-(1/2) \), \(u_{12} = u_+(1/2) \), which diagonalize the \(H_{DM}(z) \) (\(D_p = 0 \)) model and eigenvalues \(E_n[u_+(M_S)] \) are presented in Eqs (A3) and (A4), respectively.

\[
\begin{align*}
\phi_0(-1/2) &= n[|z\rangle - n|\bar{z}\rangle] / \sqrt{2}, \\
\phi_0(1/2) &= n[|z\rangle + n|\bar{z}\rangle] / \sqrt{2}; \\
\phi_0(-1/2) &= n[|z\rangle - n|\bar{z}\rangle] / \sqrt{2}, \\
\phi_0(1/2) &= n[|z\rangle + n|\bar{z}\rangle] / \sqrt{2};
\end{align*}
\]
\[
\begin{align*}
\phi_0(-1/2) &= (|z\rangle - n|\bar{z}\rangle) / \sqrt{2}, \\
\phi_0(1/2) &= (|z\rangle + n|\bar{z}\rangle) / \sqrt{2};
\end{align*}
\]
\[
E_n[u_+(1/2)] = D_+ \sqrt{3}/2, \quad E_n[u_+(m1/2)] = -D_+ \sqrt{3}/2,
\]
where \(\omega_+ = \exp(± 2\pi i / 3) \), \(\phi_0(M) = \phi_{S_{12}=0}(M) \), \(\phi_1(M) = \phi_{S_{12}=1}(M) \) are the spin functions characterized by the \(S_{12} \) intermediate spin, \(S_{12} = 0, 1 \).

\(V_3 \) trimer in the DM(\(z \)) model with \(D_0 > 0 \) possesses the following wavefunctions of the double degenerate GS (I, II):

\[
\Phi_{1+0}(\Phi_{0+1}) [D_0 > 0] = n_{1} \Omega_{m}(-1) \pm n_{2} \Omega_{m}(1).
\]
(A5)

In the intermediate spin \(S_{12} \), the wavefunctions of the ZF double degenerate GS (I, II) in transverse positive field \(B_x \) in Fig. 4b

\[
\begin{align*}
\Phi_{1+}(S_{12} = 1) &= C_1 \Lambda_+(S_{12} = 1) + iC_2 \Lambda_+(S_{12} = 0), \\
\Phi_{1-}(S_{12} = 0) &= C_1 \Lambda_-(S_{12} = 1) - iC_2 \Lambda_-(S_{12} = 0)
\end{align*}
\]
(A6)

represent the mixture of the states with \(S_{12} = 1 \) (I) and \(S_{12} = 0 \) (II) with corresponding spin structures, where

\[
\Lambda_+(S_{12}) = [\phi_{S_{12}}(-1/2) \pm \phi_{S_{12}}(1/2)] / \sqrt{2}, \quad C_{1/2} = \sqrt{\left(1 \pm \Omega \right) / \sqrt{d_x^2 + h_x^2}}.
\]
(A7)

The field-induced transformations of the planar spin structures in Figs. 3a, 3b, 4a are determined by the dependence of the in-plane \(m_{in}^{\pm} \) projections of the \(\Phi_{ik}^0 \) and \(\Phi_{ik}^0 \) states (\(D_z < 0 \)) in the \(H_{DM}^0 \) model on \(B_x \)

\[
\begin{align*}
m_{in}^z &= m_{2z}^z = \pm \frac{1}{\sqrt{0}} \left[1 \mp h_x / \epsilon_x^0 \right], \quad m_{3z}^z = \pm \frac{1}{\sqrt{0}} \left[2 \mp h_x / \epsilon_x^0 \right]; \\
\epsilon_x^0 &= \sqrt{\Delta_0^2 + h_x^2}.
\end{align*}
\]
(A8)

where \(B_x > 0 \), the superscripts \(\pm \) and \(\mp \) in \(m_{in}^z \) projections in Eq. (5) corresponds to the \(I \) (\(S_{12} = 1 \)) and \(II \) (\(S_{12} = 0 \)) states, respectively, \(\epsilon_x^0 = \sqrt{\Delta_0^2 + h_x^2} \). For the double-degenerate \(I' (\Phi_{ik}^0) \) and \(II' (\Phi_{ik}^0) \) states of the system with \(D_z > 0 \), the in-plane \(m_{1x}^z = m_{2x}^z \) and \(m_{3x}^z \) projections coincide with that of Eq (5), whereas the \(m_{1y}^z = -m_{2y}^z \) projections have opposite signs in comparison with that in Eq (5), that results in the in-plane spin structures \(I_x, I_y, I_c (S_{12} = 1) \) and \(II_x, II_y, II_c (S_{12} = 0) \) for \(D_z > 0 \), \(B_x > 0 \) in Fig. 3b. The values of the total in-plane spin projections \(|m_{1p}^z| = |m_{2p}^z| \) are the same for \(D_z > 0 \) and \(D_z < 0 \).

In transverse magnetic field \(B_x \), the low field ground state for \(D_z < 0 \) (\(D_z > 0 \)) represents the positive (negative) chiral state \(\Omega_+ (\kappa_x = +1) \) (\(\Omega_- (\kappa_x = -1) \)) with the small DM admixture of \(\Phi_{ik} = [\Phi_{ik}(-3/2) + \sqrt{3} \Phi_{ik}(1/2)] / 2 \) (\(\Phi_{ik} = [\Phi_{ik}(1/2) - \sqrt{3} \Phi_{ik}(-3/2)] / 2 \).
\begin{align*}
\{[\Phi(-3/2) - \Phi(3/2)] - \sqrt{3}[\Phi(-1/2) - \Phi(1/2)]/2\sqrt{2}; \quad \Phi_x(1/2) = \{\sqrt{3}[\Phi(-3/2) - \Phi(3/2)] + [\Phi(-1/2) - \Phi(1/2)]/2\sqrt{2}\} \text{ diagonalize the Zeeman interaction in transverse field [25, 30]. Thus, the GS wave functions at B=0.02T are } \Phi_{lx}^{(0.02 T)} \approx 0.9987\Omega_x(1) + i0.05\Phi_{lx} \\
\text{ for } D_x < 0 \text{ and } \Phi_{lx}^{(0.02 T)} \approx 0.9994\Omega_x(1) + i0.028\Phi_{lx} \text{ for } D_x > 0.
\end{align*}

In the vicinity of the LC point, \(B_x > 3-4T\), the DM contribution of the \(1/2\) state to the ground state \(\Phi_{lx}^{(S_{1z}=1)} \sim [\varphi_1(-1/2) - \varphi_1(1/2)]/\sqrt{2}\) is negligibly small (due to the large interstate interval \(\Delta^\prime; \ 3J/2 + g\mu_B B_x\) in Fig. 1) and can be neglected. In this case, the individual in-plane and out-of-plane projections \(m_{1n}\) of the individual spins of the \(V_3\) trimer in the ground state \(I\) can be approximated by Eq. (A12)

\begin{align*}
m_{1x}^1 &= m_{2x}^1; \quad -[(h_x/\varepsilon_x^0)(1+\varepsilon_x/\Delta_x) + 2(2-\varepsilon_x/\Delta_x)]/12, \\
m_{1x}^3 &= [5\varepsilon_x/\Delta_x - 1 - (h_x/\varepsilon_x^0)(1+\varepsilon_x/\Delta_x)]/12, \\
m_{1y}^1 &= -m_{1y}^1; \quad D_x(1+\varepsilon_x/\Delta_x)/4\varepsilon_x^0, \quad m_{3y} = 0, \quad M_{by} = M_{by} = 0; \\
m_{1z}^1 &= m_{2z}^1; \quad -\sqrt{3}|D_x|(1+h_x/\varepsilon_x^0)/32\Delta_x, \quad m_{3z} = -2m_{1z}^1; \quad M_{iz} = M_{iz} = 0,
\end{align*}

where \(\varepsilon_x^0 = \sqrt{\Delta_0^2 + h_x^2}, \quad \Delta_x = \sqrt{\varepsilon_x^2 + \nu_x^2}, \quad \varepsilon_x = \frac{1}{4}(3J + 2\varepsilon_x^0 - 6h_x), \quad \nu_x = \frac{1}{4}D_x\sqrt{1+h_x/\varepsilon_x^0}, \quad \Delta_0 = |D_x|\sqrt{3}/2\). The out-of-plane \(Z\)-projections \(m_{1z} = m_{2z}\) and \(m_{3z} = -2m_{1z}\) have opposite directions. The canting of the spins \(S_1, S_2 \) and \(S_3\) is determined by the equation

\[t_\theta \theta_1 = t_\theta \theta_2 = m_{1z} / m_{1p}, \quad t_\theta \theta_3 = m_{3z} / m_{3s}, \quad m_{1p} = \sqrt{m_{1z}^2 + m_{1y}^2}.\]

References

44. S.-W.Cheong, and M. Mostovoy, Nat. Mater. 6, 13 (2007).