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Abstract. Graphs distinguished by Kr-minor prohibition limited to subgraphs induced by circuits have chro-
matic number bounded by a function f(r); precise bounds on f(r) are unknown. If minor prohibition is limited
to subgraphs induced by simple paths instead of circuits, then for certain forbidden configurations, we reach
tight estimates.

A graph whose simple paths induce K3,3-minor free graphs is proven to be 6-colorable; K5 is such a graph.

Consequently, a graph whose simple paths induce planar graphs is 6-colorable. We suspect the latter to be

5-colorable and we are not aware of such 5-chromatic graphs. Alternatively, (and with more accuracy) a graph

whose simple paths induce {K5,K
−
3,3}-minor free graphs is proven to be 4-colorable (where K−

3,3 is the graph

obtained from K3,3 by removing a single edge); K4 is such a graph.

Keywords: Chromatic number, bridges of circuits.

1. Introduction. Throughout, a graph is finite and simple; notation and terminology follow [2] when
possible. G always denotes a graph. If H is a subgraph of G, then the subgraph of G induced by H
is G[V (H)].

A graph whose even circuits induce bipartite graphs is 3-colorable [5, Proposition 4]. To continue
in this spirit of restricting the chromatic number of subgraphs induced by circuits and study the
effect of such a restriction on the chromatic number of the host graph, we inquire as to the chromatic
number of graphs whose circuits induce graphs that are Kr-minor free, for r ∈ N. Indeed, Kr-minor
free graphs have their chromatic number bounded by some f(r) [1, 8, 9]. Lemma 2 of [3] states
that: if a graph G satisfies δ(G) ≥ d ≥ 5, then G has a circuit C and a subgraph H satisfying
V (H) ⊆ V (C), E(H) ⊆ E(G) \ E(C), and δ(H) ≥ 1 + d/6. From this lemma and the main results
of [1, 8, 9] we infer that:

Theorem 1.1 There exist constants c1, c2 ∈ R such that for every r ∈ N:
(a) a graph whose circuits induce graphs containing no topological Kr satisfies χ(G) ≤ c1r2.
(b) a graph whose circuits induce Kr-minor free graphs satisfies χ(G) ≤ c2r

√
log r.

Prior to Theorem 1.1 these asymptotic bounds on χ(G) were known [1, 8, 9] only in the case that
Kr-minor prohibition extends to the entire graph. Graphs containing (topological) Kr-minors none
of which is present in a subgraph induced by a circuit are easily found.

It is unknown whether the bounds in Theorem 1.1 on χ are best possible. For r = 4, we observe
that: a graph with minimum degree at least 3 contains a circuit with two overlapping chords [11]. Con-
sequently: a graph whose circuits induce series-parallel graphs (i.e., has no K4-minor) is 3-colorable.

Questions of [4, 5] (mentioned here for mere inspiration) are clearly well beyond our scope and
methods:
(I) Is it true that for every k ∈ N there exists an f(k) such that a graph G whose odd circuits induce
k-colorable graphs has χ(G) ≤ f(k)?
(II) Is there a constant c ∈ N such that a graph G whose simple paths induce 3-colorable graphs has
χ(G) ≤ c? Is it true that c = 4?

In this note, we consider graphs characterized by forbidden minors, where the minor prohibition
is restricted to the simple paths of the graph. Let G denote the class of graphs whose paths induce
{K5,K

−
3,3}-minor free graphs, and let G′ denote the class of graphs whose paths induce K3,3-minor

free graphs. Observing that K4 ∈ G and K5 ∈ G′ (actually, K5-cockades of κ = 2 are also in G′), we
prove:
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Theorem 1.2 If G ∈ G, then χ(G) ≤ 4.

Theorem 1.3 If G ∈ G′, then χ(G) ≤ 6.

Consequently,

Corollary 1.4 A graph whose paths induce planar graphs is 6-colorable.

Remarks:
(i) Theorem 1.2 relies on a theorem of [11].
(ii) In our proof of Theorem 1.2, the effect of the K5-minor prohibition is negligible. The results
of a forthcoming paper [6] imply that apart from K5, the all graphs in which every path induces a
K−3,3-minor free subgraph are 4-colorable. Let G′′ denote this class of graphs.

In [6], we describe the so called almost series-parallel(ASP) graphs which are the graphs containing
no topological K4 whose edges with both ends at least 3-valent induce a graph isomorphic to P3 or
P4. It turns out that there is a class of graphs C such that G′′ ⊆ C ⊂ ASP. Through the description
of the ASP graphs we are able to determine that: apart from K5, the members of C are 4-colorable.

Sadly, the arguments of [6] are not short and employ an approach that is different and more
sophisticated than that used in the proof of Theorem 1.2. The “simplicity” of the proof of Theorem 1.2,
which we count as a merit, indicates that perhaps the use of a full blown structure theorem of the
ASP graphs can be avoided. We do not know how to avoid it, nor do we know how to amend the
arguments here so as to reach the same assertion for G′′.
(iii) Theorem 1.3 is a corollary of the Four Color Theorem and a theorem of [7, 10].
(iv) We suspect members of G′ to be 5-colorable; or to the very least that 6-chromatic members of G′
form a finite and probably a small subset of G′.
(v) We are not aware of 3-connected 5-chromatic members of G′.
(vi) We are not aware of 5-chromatic graphs of the form of Corollary 1.4.
(vii) We suspect that the replacement of “simple path” by “circuit” in Theorems 1.2 and 1.3 should
not affect the bounds on the chromatic number. Our proofs do not support such a replacement.

2. Preliminaries. Let C be a circuit such that x, y ∈ V (C) and ∅ 6= S ⊆ V (C) \ {x, y}. If there is
an xy-segment of C not meeting S, then it is denoted [x, y]S ; we omit S if it is understood from the
context. The segment [x, y] \ {x, y} is denoted (x, y); the segments (x, y] and [x, y) are defined in a
similar manner whenever x and y are distinct. In addition, we define [x, x) = (x, x] = {x}.

Let G be a graph and let H be a subgraph of G. By H-bridge we mean either an edge e = uv such
that u, v ∈ V (H) and e /∈ E(H), or a component C of G−H together with all edges (and their ends)
which have one end in H and the other in C. A bridge of the former type is called trivial and forms
a chord of H. A bridge of the latter type is called nontrivial. If B is an H-bridge, then the vertices
V (B) ∩ V (H)1 are called the vertices of attachment of B and are denoted attach(B). An H-bridge
with S ⊆ attach(B) is called an (S,H)-bridge. If S = {x}, we write (x,H)-bridge. We omit H if it is
understood from the context.

A path is trivial if it consists of a single edge. A graph is traceable if it contains a Hamilton path.
Trivially, if B is an ({x, y}, H)-bridge, then there exists an xy-path that is internally disjoint of

H. If B is nontrivial, then there exists a nontrivial such path. Further, such a nontrivial xy-path
is called an xy-ear of H. A union of a circuit and its ear is a traceable graph. Such a union is
called an extension of C; so that a union of C with its {x, y}-ear is a traceable {x, y}-extension of C.
Alternatively, if C ′ is a traceable {x, y}-extension of C, then the handle of C ′ is the ear of C present
in C ′. By definition, handles are nontrivial paths.

A K5-minor with connected subgraphs Gi, i ∈ [5], is denoted {G1, G2, G3, G4, G5}. A K−3,3-minor
with connected subgraphs Gi, i ∈ [6], is denoted {(G1, G2, G3), (G4, G5, G6)} such that Gi, i ∈ [3],
form one partite set, Gi, 4 ≤ i ≤ 6, form the other, and G3, G6 represent the nonadjacent vertices of
K−3,3 on opposing parts. In any case, if V (Gi) = {u}, then instead of Gi, we write u.

1If B is an edge, then V (B) consists of its ends.
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3. Proof of 1.3. Suppose that G ∈ G′ is a counterexample to Theorem 1.3 with G minimal; so that
G is 7-critical. A 3-connected nonplanar graph on ≥ 6 vertices contains a circuit with 3 pairwise
overlapping chords [7, 10], i.e., a subdivided K3,3 spanned by a circuit. Thus, κ(G) = 2.

Let {u, v} ⊂ V (G) be an extremal 2-disconnector of G; that is G = G1 ∪ G2, G1 ∩ G2 = {u, v},
V (Gi)\{u, v} 6= ∅, i = 1, 2, and G2 is minimal subject to not containing 2-disconnectors of G. Clearly,
uv /∈ E(G) and κ(G2 + uv) ≥ 3.

By the minimality of G, χ(G1) ≤ 6. We may assume that χ(G2) ≥ 5; for otherwise a 6-coloring
of G1 and a 4-coloring of G2 can be combined into a 6-coloring of G. Hence, G2 is nonplanar (by the
Four Color Theorem). In addition, G2 has order ≥ 6; for otherwise G2 ⊆ K−5 (that is K5 with a single
edge removed) which is 4-colorable (recall that uv /∈ E(G)).

It follows that G2 + uv contains a subdivided K3,3, call it K, of the form described above. Let
C denote the circuit contained in K. Clearly, uv ∈ E(K) (as a chord of C or uv ∈ E(C)) otherwise
G /∈ G′. Replacing uv with a uv-path internally contained in G1 defines a traceable subgraph of G
containing a subdivided K3,3; a contradiction.

4. Proof of 1.2. The following will be used to eliminate K4-subgraphs in a minimal counterexample
for Theorem 1.2.

Claim 4.1 Let G ∈ G, κ(G) ≥ 2, δ(G) ≥ 4. If G contains a subgraph K ∼= K4, then G − K is
disconnected.

Proof: Let V (K) = {y1, y2, y3, y4}, and assume towards contradiction that G −K is connected. As
δ(G) ≥ 4, each vertex in V (K) has at least one neighbor in V (G − K). Let A = {x1, x2, x3, x4} ⊆
V (G −K) such that each member in V (K) has a single neighbor in A, and let xi ∈ NG−K(yi). We
show that we may assume that |A| = 4. Indeed, if |A| = 1, then G contains K5 as a subgraph which
is a contradiction. Next, if |A| = 2, then either, without loss of generality, x1 = x2 and x3 = x4,
or, without loss of generality x1 = x2 = x3 and x4 is a second distinct vertex. In the former case,
G[V (K) ∪A] is isomorphic to K−3,3 and is traceable. In the latter case, the assumption that G−K is
connected implies that there exists an x1x4-path P in G −K. Let P ′ be a y1y4-path in G such that
P ′ = P + y1 + y1x1 + y4 + y4x4, and V (K) ∩ V (P ′) = {y1, y4}. There exists a path P ′′ such that
V (P ′′) = V (K) ∪ V (P ′). P ′′ spans a K5-minor {y1, y2, y3, y4, P}.

Finally, suppose that |A| = 3, and assume, without loss of generality, that x1 = x2 and that x3
and x4 are two vertices distinct from x1. Let P be an x3x4-path in G − K; the latter exists since
G −K is assumed to be connected. If x1 /∈ V (P ), then G[V (P ) ∪ V (K) ∪ {x1}] is a traceable graph
subcontractible to K−3,3: {(y1, y2, P ), (y3, y4, x1)}. If x1 ∈ V (P ), then G[V (P ) ∪ V (K)] is a traceable
graph subcontractible to K5 {P, y1, y2, y3, y4}.

We may assume that |A| = 4. In addition, we may assume that there is no partition (B, C) of A
into pairs such that in G −K there are two vertex-disjoint (B, C)-paths. Indeed, if, to the contrary
and without loss of generality, P1 is an x1x2-path and P2 is an x3x4-path in G−K such that P1 and
P2 are vertex-disjoint, then G[V (P1) ∪ V (P2) ∪ V (K)] is a traceable graph subcontractible to K−3,3:
{(y1, y2, P2), (y3, y4, P1)}. Thus, there exist: a vertex x ∈ V (G−K), an x1x2-path Q1, and an x3x4-
path Q2, in G−K, such that V (Q1)∩V (Q2) = {x} (possibly x ∈ A). Hence, G[V (Q1)∪V (Q2)∪V (K)]
is traceable and contains the K5-minor: {Q1 ∪Q2, y1, y2, y3, y4}.

Proof of 1.2. Suppose that G ∈ G is a counterexample to Theorem 1.2 with G minimal; so that G
is 5-critical. Consequently, G is 2-connected, δ(G) ≥ 4, and

(1) G has no set S ⊆ V (G) such that G− S is disconnected, |S| ≤ 4, and G[S] is a complete graph.

G contains a circuit with two overlapping chords such that two end vertices of these chords are
joined by an edge of the circuit [11]. Let C denote a circuit of G satisfying the following:
(2) C contains two overlapping chords xz and yw such that x,w, z, y appear in this order along C.
(3) yz ∈ E(C).
(4) subject to (2) and (3), |V (C)| is minimum.
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(5) subject to (2), (3), and (4), |[x,w]y| is minimum.

Agreement. Throughout the remainder of this proof, unless otherwise stated, segments of the form
[u, v], (u, v) and so on always refer to segments of C where u, v ∈ V (C). In addition, the interior of
such a segment does not meet {x,w, z, y}.

At least one of the sets (w, z) or (y, x) is empty. For otherwise, G[C] is subcontractible to K−3,3:
{([x,w), y, (w, z)), (w, z, (y, x))}. Hence,

(6) xy ∈ E(C) or zw ∈ E(C).

Due to symmetry, in subsequent arguments it is assumed that

(7) xy ∈ E(C).

A traceable {y, h}-extension of C with h ∈ (w, z) is subcontractible to K−3,3:
{(y, (w, z), [x,w)), (z, w, P − {y, h})}, where P is the handle of the extension. A symmetrical argu-
ment establishes that a traceable {y, h}-extension of C with h ∈ (x,w) is subcontractible to K−3,3.
Consequently,

(8) all {y, h}-bridges of C with h ∈ (x,w) ∪ (w, z) are trivial.

By (5) and (8),

(9) there are no {y, h}-bridges of C with h ∈ (x,w).

If (w, z) is nonempty, then a traceable {x, y}-extension of C is subcontractible to K−3,3:
{(x, y, (w, z)), ((x,w], z, P − {x, y})}, where P is the handle of the extension. As G is simple, (7)
implies that any {x, y}-bridge of C, apart from xy, is nontrivial. Hence,

(10) if an {x, y}-bridge of C, other than xy, exists, then (w, z) = ∅ (and thus zw ∈ E(C)).

A symmetrical argument to the one used for (10) establishes that

(11) if a {y, z}-bridge of C exists, then (x,w) = ∅ (and thus xw ∈ E(C)).

By (4), C has no chord uv such that u, v ∈ [x,w] or u, v ∈ [w, z]. The latter and since {xy, yz} ⊂
E(C), it follows that

(12) degG[C](w) = 3.

If there is a t ∈ NG(y)∩ (w, z), then a traceable {k, g}-extension of C with k ∈ [w, t) and g ∈ (t, z],
is subcontractible to K−3,3: {((k, g), [x,w), P − {k, g}), ((g, z], [w, k), y)}, where P is the handle of the
extension. As, by (4), all {u, v}-bridges with u, v ∈ [w, z] are nontrivial, it follows that

(13) if there exists a vertex t ∈ NG(y)∩ (w, z), then G contains no {k, g}-bridges of C with k ∈ [w, t)
and g ∈ (t, z].

As G is 2 connected, a bridge of C has at least two vertices of attachment in C. Let B denote the
set of {`, r}-bridges of C in G such that ` ∈ [x,w) and r ∈ (w, z]. We propose to consider two cases.
Either there exists an {`, r}-bridge in B such that ` ∈ (x,w) or r ∈ (w, z), or no such bridge exists in B.
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Case (I). Assume that

(14) there is no {`, r}-bridge in B such that ` ∈ (x,w) or r ∈ (w, z).

By Claim 4.1 and (1), G does not contain K4 as a subgraph. Consequently, we suggest three cases:
(I.1) (x,w) 6= ∅ and (w, z) 6= ∅, (I.2) (x,w) = ∅ and (w, z) 6= ∅, (I.3) (x,w) 6= ∅ and (w, z) = ∅. Since
the proof of (I.2) does not rely on (5), the case (I.3) is symmetrical to case (I.2).

Case (I.1) Assume that (x,w) 6= ∅ and (w, z) 6= ∅. If B is a nontrivial y-bridge of C, then, since
κ(G) ≥ 2, B has a second vertex of attachment h. By (3), (7), (8), (9), (10), and (11), h /∈ V (C)\{w}.
Consequently, y and w are the sole vertices of attachment of B. Hence, {y, w} is a vertex-cut; contra-
dicting (1). It follows that G contains no nontrivial y-bridges of C. By (9) and since δ(G) ≥ 4,

(15) NG(y) ⊆ V (C), and NG(y) \ {x,w, z} is nonempty and is contained in the set (w, z).

As G is simple, any {x, z}-bridge B, apart from xz, is nontrivial. If the sole vertices of attachment
of B are x and z, then {x, z} is a vertex-cut; contradicting (1). Thus, B contains a third vertex of
attachment h. By (14), h /∈ (x,w) ∪ (w, z). By (15), h 6= y. Hence, h = w. This is a contradiction as
by (13) and (15) there are no {w, z}-bridges. It follows that

(16) the edge xz is the sole {x, z}-bridge of C.

G admits the following description:
(i) By (3) and (7), {yz, xy} ⊂ E(C). By (4), G contains no chord uv of C such that u, v ∈ [x,w],
or u, v ∈ [w, z]. By (14), G contains no edge uv such that u ∈ (x,w) and v ∈ (w, z). Thus,
C ′ = G[V (C) \ {y}] is an induced circuit of G.

(ii) By (15), NG(y) = {d1, d2, . . . , dm} ⊆ V (C ′), m ≥ 4, such that d1 = x, d2 = w, and dm = z, and
d1, d2, . . . , dm appear in this order along C ′.

(iii) Let [di, di+1] denote the segment of C ′ the interior of which meets no member of NG(y). For
1 ≤ i ≤ m−1, define Di ⊆ V (G)\V (C) to be the set of vertices such that each belongs to a C ′-bridge
of G attached to [di, di+1]. Define Gi = G[Di ∪ [di, di+1]]. By (13), (14), and (16), for every nontrivial
uv-path P in G such that V (C) ∩ V (P ) = {u, v}, there exists a single 1 ≤ i ≤ m − 1 such that
u, v ∈ [di, di+1]. Consequently, Dj ∩Dk = ∅, for every 1 ≤ j < k ≤ m− 1, V (Gj) ∩ V (Gk) = {dj+1} if
k = j + 1, and V (Gj) ∩ V (Gk) = ∅ if k > j + 1. By (13), (14), (16), and as C ′ is chordless, we have
that except for the edge xz that connects a vertex of G1 and a vertex of Gm−1, the graph G contains
no edge uv such that u ∈ V (Gj) \ V (Gk) and v ∈ V (Gk) \ V (Gj), for 1 ≤ j < k ≤ m− 1.

By the minimality of G, χ(Gi) ≤ 4; for 1 ≤ i ≤ m − 1. We propose two cases; either there exists
a subgraph Gi that admits a 4-coloring µ in which µ(di) 6= µ(di+1), or for every subgraph Gi, each
4-coloring µ of Gi has µ(di) = µ(di+1). In the latter case, the minimality of G implies that there exists
a 4-coloring ψ of G− y − xz such that ψ(di) = ψ(di+1), for i ∈ [m− 1]. Hence, in every 4-coloring of
G− y − xz, all vertices in the set NG(y) reside in the same color class. Consequently, χ(G− y) ≥ 5;
in contradiction to the minimality of G.

In the complementary case, that there exists a subgraph Gi that has a 4-coloring µ in which
µ(di) 6= µ(di+1), it is easy to see that a 4-coloring of G− y with NG(y) colored with at most 3 colors
exists; implying that χ(G) ≤ 4 which is a contradiction.

Case (I.2) Assume now that (x,w) = ∅ and (w, z) 6= ∅. By (10), (14), simplicity of G, and since
{xy, xw} ⊂ E(C), it follows that degG[C](x) = 3. The bound δ(G) ≥ 4 implies that any additional
neighbor of x lies in a nontrivial x-bridge B of C. Since G is 2-connected, B has a second vertex of
attachment on C, say h. As (w, z) is assumed to be nonempty, then h 6= y, by (10), and h /∈ (w, z),
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by (14). Consequently, h ∈ {w, z}. If x and h are the sole vertices of attachment of B, then the set
{x,w} or {x, z} is a vertex-cut; contradicting (1). Hence, it follows that

(17) a nontrivial x-bridge of C exists; and every such bridge is a {w, x, z}-bridge of C.

If B is a nontrivial {y, h}-bridge of C, then by (10), h 6= x. By (8), h /∈ (x,w) ∪ (w, z). Thus,
h ∈ {w, z}. If y and h are the sole vertices of attachment of B, then {y, w} or {y, z} are vertex-cuts;
contradicting (1). Hence, it follows that

(18) a nontrivial y-bridge is a {w, y, z}-bridge of C.

Let B be a {w, x, z}-bridge of C. If B′ is a {w, y, z}-bridge of C, then by (10), there are no {x, y}-
bridges, and thus (V (B)∩V (B′)) \ {w, z} = ∅. Consequently, there exist a nontrivial xw-path P1 and
a nontrivial yz-path P2 such that V (P1) ∩ V (P2) = ∅ and each of these paths is internally disjoint of
C. Let P3 denote the subpath of C connecting w and z on C not containing x and y. Let P denote
the path P1 ∪ P2 ∪ P3. G[P ] is subcontractible to K−3,3: {(x, [w, z), P2 − {y, z}), (y, z, P1 − {x,w})}.

By the above argument, (17), and (18), we conclude that G contains no nontrivial y-bridges;
implying that NG(y) ⊆ V (C). This and the bound δ(G) ≥ 4 then imply that there exists a vertex
g ∈ NG(y) \ {w, x, z}. As {xy, yz, xw} ⊂ E(C), it follows that g ∈ (w, z). Thus, by (13), G contains
no {w, z}-bridges of C, contradicting (17).

This completes our proof of Case (I).

Case (II). Assume then that there exist {`, r}-bridges in B such that ` ∈ (x,w) or r ∈ (w, z).
Let B ∈ B be such a bridge. If r 6= z, then ` ∈ [x,w) and any traceable {`, r}-extension of C is
subcontractible to K−3,3: {(w, z, P − {`, r}), ([x,w), (w, z), y)}, where P is the handle of the extension.
It follows that

(19) if r 6= z, then B is trivial.

If ` 6= x and r = z, then a symmetrical argument to the one used to establish (19) implies that
z` ∈ E(G). However, the existence of an edge of this form contradicts (5). Hence, the case that ` 6= x
and r = z does not occur. Consequently, in subsequent arguments we assume that

(20) r 6= z and r` ∈ E(G).

Any traceable {w, h}-extension of C with h ∈ [x,w) is subcontractible to K−3,3:
{(y, (w, z), V (P )− {w, h}), ([x,w), w, z)}, where P is the handle of the extension. Due to (4), if G
contains a {w, h}-bridge where h ∈ [x,w), then such a bridge is nontrivial. Hence, it follows that

(21) G contains no {w, h}-bridge, where h ∈ [x,w).

A symmetrical argument to the one used for (21) establishes that

(22) if in addition to (20), ` 6= x as well, then G contains no {w, h}-bridge, where h ∈ (w, z].

By (20), two cases are left to be considered. Either ` 6= x, or ` = x. In the former case, (12), the
bound δ(G) ≥ 4, and 2-connectivity, assert that any additional neighbor of w lies in a w-bridge of C,
say B′, such that a second attachment vertex h of B′ satisfies h /∈ [x,w)∪ (w, z], by (21) and (22). By
(3), (7), {xy, yz} ⊂ E(C). Hence, B′ has exactly two vertices of attachment which are w and y. As
yw ∈ E(G) and G is simple, B′ is nontrivial implying that {y, w} is a vertex-cut; in contradiction to
(1).

We may assume ` = x. By (8), if a {y, h}-bridge with h ∈ (w, z) exists, then it is trivial. If
h ∈ (w, r), then G[V (C)] is subcontractible to K−3,3: {([x,w), (w, r), (r, z]), (y, r, w)}. If h ∈ (r, z),

6



then G[V (C)] is subcontractible to K−3,3: {([x,w), (r, z), [w, r)), (y, r, z)}. By (20), (w, z) is nonempty.
Thus, by these arguments, (9), and (10) it is seen that

(23) G contains no {y, h}-bridge, where h ∈ (w, r) ∪ (r, z) ∪ [x,w).

Let A ∈ {(w, r), (r, z)}. If A 6= ∅ and yr ∈ E(G), then G[C] is subcontractible to K−3,3:
{([x,w), y, A), (w, [r, z), z)} or the minor {([x,w), y, A), (z, (w, r], w)}. Consequently, it follows from
(8) that

(24) if a {y, r}-bridge of C exists, then yr ∈ E(G) and (w, r) = (r, z) = ∅, so that {wr, rz} ⊂ E(C).

If yr ∈ E(G), then a traceable {w, r}-extension of C is subcontractible to K−3,3:
{([x,w), y, P − {w, r}), (w, r, z)}, where P is the handle of the extension. By (4) and as G is simple,
a {w, r}-bridge of C cannot be trivial. Consequently, by (8), it follows that

(25) if a {y, r}-bridge of C exists, then a {w, r}-bridge of C does not exist.

As δ(G) ≥ 4, the set NG(y)\{w, x, z} is nonempty. Let u ∈ NG(y)\{w, x, z}. Two complementary
cases are considered. Either u ∈ V (C), or u /∈ V (C). In the former case, it follows from (3), (7),
(8), (9), and (23) that u = r. In addition, (24) asserts that {rw, rz} ⊂ E(C). By (12) and since G
is 2-connected, G contains a nontrivial {w, h}-bridge D, where h ∈ V (C). By (21), h /∈ [x,w). Since
NG(y) ∩ (w, z) 6= ∅, then (13) implies that h 6= z. By (25), h 6= r. It follows that D has exactly two
vertices of attachments in C and these are w and y. Since yw ∈ E(G) and G is simple, D is nontrivial.
This asserts that {y, w} is a vertex-cut; a contradiction to (1).

Consider the complementary case that u /∈ V (C). Let D′ denote the y-bridge of C containing
u. As G is 2-connected, D′ has a second vertex of attachment h′ in V (C). By (9), (10), (23) and
the above argument for the case that u ∈ V (C), we have that h′ ∈ {z, w}. If y and h′ are the sole
vertices of attachment of D′, then {y, w} or {y, z} form vertex-cut; contradiction to (1). Thus, D′ is
a {y, w, z}-bridge of C. Consequently, a traceable {w, z}-extension of C exists, which is contractible
to K−3,3: {(y, (w, z), P − {w, z}), (w, z, [x,w))}, a contradiction.

This completes the proof of Case (II), and of Theorem 1.2.
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