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SECOND ORDER ACCURACY DIFFERENCE SCHEME FOR 
APPROXIMATE SOLUTIONS OF DELAY DIFFERENTIAL 

EQUATIONS. 

A. ASHYRALYEV*, H. AK<;At AND U. GURAYt 

Abstract. We describe a second order accuracy difference scheme for the approximate 
solutions of linear delay differential equations. A sufficient condition for the stability of this 
difference scheme is given. A convergence estimate for the difference scheme is obtained. 

AMS(MOS) subject classification. 34K40, 34K20, 65L05, 65L20 

1. Introduction and preliminary results. Numerical solutions of 
the delay differential equations have been studied extensively by many re­
searchers (cf.,e.g. [1-2), [4-7) and the references therein) and developed over 
the last two decades. In the literature mostly the condition lb(t)l ~ Rea(t) 
is considered. The subject of this paper is the stability analysis of high or­
der accuracy approximate solutions of variable coefficients delay differential 
equations. In addition, we introduced the second order accuracy difference 
schemes for the approximate solutions of the initial value problem for lin­
ear delay equations. A sufficient condition for the stability of this difference 
scheme is given. Convergence estimates for second order accuracy difference 
schemes are also obtained. 

Usually delay equations can be solved by adapting standard numerical 
methods for differential equations without delay. But it is difficult to gen­
eralize for any numerical method to obtain for instance high order accuracy 
algorithms, because high order methods may not give good results. Even if 
a(t), c(t) and g(t) are arbitrary differentiable functions, but u(t) may not have 

* Department of Mathematics, Fatih University, Istanbul. 
t King Fahd University of Petroleum and Minerals, Department of Mathematical Sci­

ences P.O.Box 1071, 31261 Dhahran, Saudi Arabia. 
t Department of Mathematics, Akdeniz University, Antalya. 
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224 A. ASHYRALYEV, H. AKQA AND U. GURAY 

the required number of derivatives for a sufficiently large t. This property 
can be examined on the following test equation: 

(1.1) 
u'(t) = -u(t) + u(t- 1), 

u(t) = t + 1, 
t:::: 0, 

-1 :S t :S 0, 

For t E [0, 1], u( t- 1) = t is obvious. Therefore on the interval [0, 1] the test 
problem can be considered as an ordinary initial value problem (IV P) such 
as 

(1.2) u~(t) = -u1(t) + t, 

Having solved this simple initial value problem, one can compute u(t) on the 
interval [1, 2] by solving the delay differential equation 

(1.3) 

and, in general, 

(1.4) u~(t) = -ui(t) + Ui- 1(t- 1), ui(i- 1) = ui_1(i- 1), i = 1, 2, ... 

By mathematical induction, approximate solutions of the problem (1.1) 
can be easily obtained. Using the recursive formula ( 1.4) the first few terms 
of the sequence of the solutions can be found as follows: 

(1.5) 

u1(t) 

u2(t) 

U3(t) 

- 2e-t + t- 1, 

- 2e-t + 2te-Ct-l) + t- 3, 

2e-t + (t2 + 2)e-Ct-l) + t- 5. 

The second derivatives of the solutions sequence u1(t) and u2(t) have dif­
ferent values at the ooint t = 1. That means u"(t) does not exist. 

4 ' ' 

2. Statement of the problem. Consider the linear delay differential 
equation 

(2.1) 
u'(t) 

u(t) 

-a(t)u(t) + b(t)u(t- w), t ::=: 0, 

g(t), -w :S t :S 0, 

where a(t),c(t) E C2([0,oo),R) and g(t) E C2([-w,O],R), w ::=: 0 is a con­
stant delay. For existence and uniqueness of the solutions of the initial value 
problem (2.1) see [4,5,6]. We are interested to introduce an asymptotically 
stable high order accuracy difference scheme for the approximate solutions 
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of (2.1). It has been already proved that if lb(t)i :S a(t) for every t 2': 0, 
then the solutions of (2.1) are asymptotically stable [4,5, 7]. A solution u(t) 
of ( 2.1) is said to be asymptotically stable if 

(2.2) 

Using the second order accuracy implicit difference scheme for differen­
tial equations without delay (see, for example, [3]), we have the following 
approximate solutions for the IVP (2.1) 

(2.3) 

u0 = g(O), tk = kT, NT= w, 0 :S k :S N,and 

ak = a(tk -1T), bk = b(tk -1T), k 2': 1, 

~(uk- Uk-1) + (ak + 1TaDuk = 1akbkTg(tk- w) 
+1bk[g(tk- w) + g(tk-1- w)], 1 :S k :S N, 

~(uk- Uk-1) + (ak + 1Ta~)uk = 1(Tak + 1)bkuk-N 

+1bkUk-N-1, N + 1 :S k. 

The difference scheme (2.3) approximates the solutions of (2.1) on the entire 
interval. In addition, if the condition lb(t)i :S a(t) for every t 2': 0 is satisfied, 
then the difference scheme (2.3) defines an asymptotically stable solution for 
the IVP (2.1). 
Denote 

(2.4) k > 0, 

(2.5) (k .) = { Dk · · · Di+l' k > j, 
u ,J 1 k- . 

' - J. 

LEMMA 1. If Dk is defined by (2.4), then the following identity 

(2.6) I- D·- {Ta· + .!_(TaY} D· }- J 2 J J 

holds for j = 1, 2, 3 · · · The proof of the lemma is obvious. 
LEMMA 2. An approximate solution of the IVP (2.1) can be defined as 

follows: 

(2.7) 

k 

uk = u(k, O)g(O) + .E !Tu(k, j- 1)[ajbjTg(ti- w) 
]=1 

+bi(g(tj- w) + g(tj-1 - w))] 
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where 1 ~ k ~ N, and 

k 1 
Uk = u(k, N)uN + L: 2Tu(k,j- 1)[(ajT + 1)bjUj-N 

j=N+1 (2.8) 
+bjUj-N-1] 

where k 2: N + 1. The proof of the lemma is obvious. 
THEOREM 1. Assume that the condition lb(t)l ~ a(t) (for every t 2: 0) 

holds and uk is defined by (2.7)- (2.8). Then for every k 2: 0 and for every 
step size T we have 

(2.9) 

Proof. First consider the case 1 ~ k ~ N. From the hypothesis and 
using the formula (2.7), we have 

~ u(k, O)lg(O)I + ma?C lg(ti)l t Tu(k, j)Di {~a]T + ai} 
-N~J~O j=l 2 

and by the Lemma 1 

(2.10) 

k k 
L: u(k,j)Di[ajT + ~(ajT)2 ] = L: [u(k,j)- u(k,j -1}] 

j=1 j=l 

= 1- u(k,O) 

It follows that 

consequently we obtain the result 

(2.11) 
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for 1 :::; k :::; N . Applying the mathematical induction, one can easily show 
that it is true for every k. Namely, assume that the inequality (2.9) is true 
for N(n- 1) :::; k :::; nN, n = 1, 2, 3, · · · Thus 

and by Lemma 2 we have 

k {(a·T)2 } L u(k, j)Di 1 + ajT = 1 - u(k, nN) 
j=nN+l 2 

and it follows that 

< max lu ·I < max lg(t ·)I 
- (n-l)N~j::;nN 1 - -N::;j::;o 1 

for every k, nN:::; k:::; (n + 1)N. 
This result completes the proof of the theorem . 

3. Convergence estimate of the difference scheme. We have al­
ready shown in Section 2 that approximate solutions of (1.2) defined by (2.3) 
are bounded for every k. Before going to discuss convergence properties of 
the solutions, let us introduce the following notations. 

ek = u(tk) - uk represents the component of the error vector er, and Ak 
denotes the component of the approximation vector Ar where 

(3.1) 

(3.2) 
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The following equations can be obtained in an obvious way: 

(3.3) tk s-r/2 

- ~ J I u"(>..) d).. ds, tk-1 :S s :S tk 
tk-r/2 s 

and 

u(s)- u(tk- ~) = (s- tk- ~)u'(tk- ~) 

(3.4) s 

+ I (s- A)u"(.A) dA, tk-1 :S s :S tk. 
tk-T/2 

THEOREM 2. The estimate 

k 

(3.5) I>-IAil ::; MT2
, for all k 2: 1 

i=1 

holds, where M is a real number independent ofT. 
Proof. First consider the case 1 ::; k ::; N. Using the definition of Ak, we 

may write from (2.1) 

tk 

1 J T Ak =- (-a(s)u(s) + b(s)g(s- w))ds + (ak + -a~)u(tk) 
T 2 

tk-1 

tk 

=.!. Jr (b(s)g(s- w)- bkg(tk-!. )) ds + bk[g(tk- ~) 
T 2 2 

tk-l 

1 1 tk T 

[--(g(tk- w) + g(tk-1- w))J +- J (aku(tk- -)- a(s)u(s)) ds 
2 T 2 

tk-1 
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Analogously, the definition of Ak for the case N + 1 ~ k is 

tk 

1 J T ? Ak = - ( -a(s)u(s) + b(s)g(s- w))ds + (ak + -a}Ju(tk) 
T 2 

tk-! 

1 1 tk T 

--( u(tk-N) + u(tk-1-N) )] ds +- j (aku(tk - -) - a(s )u(s)) ds 
2 T 2 

tk-1 

+ak{ J (aku(tk)-~(s)u(s))ds+ J (b(s)u(s-w)-bku(tk-N))ds}. 
tk-T/2 tk-T/2 

Thus we can rewrite Ak using the formulas (3.3)-(3.4) for the case 1 ~ 
k~ N: 

tk tk-T/2 

+~ j j (s- .X)[(a"(.X)- a(.X)a'(.X))u(.X) + (2a'(.A)- a2(.-\))u'(.A) 
tk-1 s 

+a(.X)[b'(.X)g(,\- w) + b(.-\)g'(.X- w)]] d,\ ds 

{ 4 [4-~2 4 l 
+a, ,,lf, .f a'(A)u(s) dA + .f a,u'(A) dA ds 
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It follows that 

k 

(3.6) LTIAil ~ MT2
• 

i=l 

Finally, for the case k ~ N + 1, the same estimate as before may be obtained 
by a similar type of calculations. The proof of the theorem is complete. 

THEOREM 3. lfu(t) is a smooth solution of the IVP (2.1) and the approx­
imate solutions uk are defined by (2.3), then for every k ~ 1 the convergence 
estimate 

(3.7) 

holds, where M is a real number independent ofT. 
Proof. The proof of the theorem is based on the estimate (3.6) and 

k 

(3.8) lekl ~ LTIAil for all k ~ 1. 
j=l 

First let us consider the case 1 ~ k ~ N. Using (2.4)-(2.5), we can obtain 

k k 

(3.9) lekl ~ L:Tu(k,j -1)1Ail ~ LTIAil· 
j=l j=l 

By mathematical induction it can be shown that the estimate (3.9) is also 
true for any k. Namely, assume the inequality (3.8) is true for (n- l)N ~ 
k ~ nN. Then it follows that 

k 

+ L Tu(k,j)IAil 
j=nN+l 
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k 

+ L TlAjl 
j=nN+l 

~ [u(k, nN) +(I- u(k, nN))] rna~ lei I 
(n-l)N~J~nN 

k k 

+ L TlAjl ~ LTlAil 
j=nN+l j=l 

which completes the proof. 
Note that the better convergence of difference scheme (2.3) in comparison 

with the convergence of Euler's difference scheme for the nonsmooth solution 
of the problem is supported by the results of numerical experiments. 

Acknowledgment. The first author gratefully acknowledges the sup­
port provided by TUBITAK-DOPROG Program, the second author would 
like to thank King Fahd University of Petroleum and Minerals, Department 
of Mathematical Sciences for providing excellent research facilities. The au­
thors are grateful to Valery Covachev for his critical comments and useful 
improvements. 

REFERENCES 

[1] AL-M UTIB A. N., Stability properties of numerical methods for solving delay 
differential equations, J. Comput. and Appl. Math. 10 (1984), 71-79. 

[2] ASHYRALYEV A. AND AKQA H., Stability estimates of difference schemes for 
neutral delay diffrential equations, Nonlinear Analysis (to appear). 

[3] ASHYRALYEV A. AND SOBOLEVSKII P. E., Well-Posedness of Parabolic Dif­
ference Equations, Birkhauser-Verlag, Basel-Boston-Berlin, 1994. 

[4] BELLEN A., One-step collocation for delay differential equations, J. Comput. 
and Appl. Math. 10 (1984), 275-283. 

[5] BELLEN A., JACKIEWICZ Z. AND ZENNARO M., Stability analysis of one-step 
methods for neutral delay-differential equations, Numer. Math. 52 (1988), 
605-619. 

[6] CoOKE K. L. AND GYORI I., Numerical approximation of the solutions of 
delay differential equations on infinite interval using piecewise constant ar­
guments, J. Comput. Math. Appl. 28 (1990), 81-92. 

[7] TORELLI L., Stability of numerical methods for delay differential equations, J. 
Comput. and Appl. Math. 25 (1989), 15-26. 





FUNCTIONAL 
DIFFERENTIAL 
EQUATIONS 

VOLUME 6 

1999, NO 3-4 
PP. 233- 247 

NONOSCILLATION OF A SECOND ORDER LINEAR DELAY 
DIFFERENTIAL EQUATION WITH A MIDDLE TERM * 

L. BEREZANSKY t AND E. BRAVERMAN t 

Abstract. For a delay differential equation 

r m 

x(t) + L a~.:(t)x(h~.:(t)) + L b~.:(t)x(gk(t)) = o, h~.:(t) :::; t, g~,:(t) :::; t, 
k=l 

a generalized Riccati inequality is constructed which implies nonoscillation of the differ­
ential equation. 

Comparison theorems and an explicit nonoscillation condition are presented. 

Key Words. Oscillation, second prder delay equation, comparison theorems. 

AMS{MOS) subject classification. 34K15, 34K25. 

1. Introduction. This paper deals with oscillation problems for a scalar 
linear delay differential equation of the second order. Such equations attract 
attention of many mathematicians due to their significance in applications. 
We mention here the monographs of A. D. Myshkis [1], S.B. NORKIN [2}, 
G.S. LADDE, V. LAKSHMIKANTHAM and B.G. ZHANG [3], I. GYORI and 
G. LADAS [4], L.N. ERBE, Q. KONG and B.G. ZHANG [5] and references 
therein. The monographs contain examples of physical models leading to 
equations of the type 

r m 

x(t) + :L ak(t)x(hk(t)) + :L bk(t)x(gk(t)) = J(t), hk(t) ::s t, 9k(t) :::; t. 
k=l k=l 

* Supported by Israel Ministry of Absorbtion 
t Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel 
t Technion - Israel Institute of Technology, Haifa 32000, Israel 
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234 L. BEREZANSKY AND E. BRAVERMAN 

The term with the first derivative is usually called "a damping term". 
For example, in the usual equation of oscillations (without delay) such a term 
corresponds to the media resistance. The greater part of the literature deals 
with equations not containing the term with the first derivative. For these 
equations if the coefficients and a solution are positive on the semiaxis then 
its derivative is nonnegative. This fact is very important; it is employed in 
most investigations on second order delay differential equations. If the first 
derivative is included in the equation explicitly (the equation contains the 
middle term), then a sign of a solution does not uniquely define the sign of its 
derivative. Therefore the study of oscillation properties of the equations with 
the middle term is more complicated. This is the reason why such equations 
are much less studied than the equations without the middle term. The 
following particular cases were considered: the middle term is not delayed 
(see, for example, papers [6,7]) and the delay is constant [8,9]. 

In this paper we consider the general class of equations containing the 
middle term with deviating argument and study properties of these equa­
tions concerned with nonoscillation. The main result is the following: if a 
generalized Riccati inequality (which is constructed here) has a nonnegative 
solution for t ~ t0, then the differential equation for t ~ t0 has a positive 
solution with a nonnegative derivative and the fundamental function of this 
equation is positive. If the middle term is not delayed, this immediately 
yields that the following four properties are equivalent: nonoscillation of 
solutions of this equation and the corresponding differential inequality, posi­
tiveness of the fundamental function and existence of a nonnegative solution 
of a generalized Riccati inequality. 

We employ a generalized Riccati inequality to compare oscillation prop­
erties of two equations without comparing their solutions. One can treat 
these results as a natural generalization of the well-known Sturm compari­
son theorem for a second order ordinary differential equation. 

By applying the positiveness of the fundamental function we compare 
positive solutions of two nonoscillation equations. 

The paper also contains explicit nonoscillation conditions obtained by 
construction solutions of generalized Riccati inequality. 

The paper is organized as follows. Section 2 contains relevant definitions 
and notations. In section 3 we obtain the main result. Section 4 deals with 
comparison results. The last section includes some explicit nonoscillation 
conditions. 

In this paper we follow the method employed in [10] for the second order 
delay differential equation without middle term. 
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2. Preliminaries. We consider a scalar delay differential equation of 
the second order 

r m 

(1) x(t) + 2: ak(t)x(hk(t)) + 2: bk(t)x(gk(t)) = o, 
k=l k=l 

under the following assumptions: 
( a1) ak, bk are Lebesgue measurable and locally essentially bounded 

functions; 
(a2) hk, 9k are Lebesgue measurable functions, 

hk(t) :S t, lim hk(t) = oo, 9k(t) :S t, lim 9k(t) = oo. 
t-+(X) t-= 

Together with (1) consider for each t0 ~ 0 an initial value problem with 
a right hand side 

r m 

(2) x(t) + 2: ak(t)x(hk(t)) + 2: bk(t)x(gk(t)) = f(t), t ~to, 
k=l k=l 

(3) x(t) = cp(t), x(t) = '1/J(t), t <to; x(to) = Xo, x(to) =X~. 

We also assume that the following hypothesis holds 
(a3) f: [t0 , oo) --+ R is a Lebesgue measurable locally essentially bounded 

function, cp, '1/J: ( -oo, t 0 ) --+Rare Borel measurable bounded functions. 
DEFINITION 1. Suppose a function x : [t0, oo) --+ R is differentiable and 

x is locally absolutely continuous function. Extend the functions x and x for 
t :S t0 by the help of equalities {3). We say that extended so function x is 
a a solution of problem (2), {3) if it satisfies equation {2) for almost every 
t E [t0 ,oo). 

DEFINITION 2. For each s ~ 0 the solution X(t, s) of the problem 
r m 

x(t) + 2: ak(t)x(hk(t)) + 2: bk(t)x(gk(t)) = o, t ~ s, 
k=l k=l (4) 

x(t) = 0, x(t) = 0, t < s; x(s) = 0, x(s) = 1, 

is called a fundamental function of equation (1). 
Remark. In literature [16] the fundamental function is also called the 

Cauchy function. 
We assume X(t, s) = 0, 0 :S t < s. 
Let functions x1 and x2 be the solutions of the following problems 

r m 

x(t) + 2: ak(t)x(hk(t)) + 2: bk(t)x(gk(t)) = o, t ~to; 
k=l k=l 
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x(t) = 0, x(t) = 0, t < to, 

with initial values x(to) = 1, x(to) = 0 for X1 and x(to) = 0, x(to) = 1 for 
x 2 , respectively. 

By definition x2(t) = X(t, to). 
LEMMA 1. [11] Let {a1)-{a3) hold. Then there exists one and only one 

solution of problem {2), {3} that can be presented in the form 

r m 1t x(t) = x1(t)xo + x2(t)x~ +it. X(t, s)f(s)ds- L X(t, s)bk(s)r.p(gk(s))ds-
to k=l to 

(5) 

{The functions r.p(t) and '1/J(t) which describe "the prehistory" of the pro­
cess are not defined fort 2:: t0 . In the latter equality we assume r.p(s) = 0, if 
s >to and '1/J(s) = 0, if s >to.) 

3. Nonoscillation Criteria. Denote 

a+= max{a,O}, a-= max{-a,O}. 

The following theorem establishes a sufficient condition of existence of a 
nonoscillatory solution. 

THEOREM 1. Suppose there exist t0 2:: 0 and a nonnegative locally abso­
lutely continuous function u satisfying the following conditions: 

{b1) u(t) + u2(t) + t' at(t)u(hk(t)) exp {- r u(s)ds} + 
k=l Jhk(t) 

(6) m 

1 

{ t } L bt(t) exp -1 u(s)ds ~ 0 
k=l 9k(t) 

where the sums contain only those terms for which hk ( t) 2:: t0 or, respectively, 
gk(t) 2:: to. 

{b2) The equation 

r 

(7) z(t) + u(t)z(t) + :L ak(t)z(hk(t)) = o 
k=l 

has a positive fundamental function Z(t, s) > 0 fort> s > t0 . 
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Then 
1} the fundamental function of {1) and its derivative in t x; are positive 

fort> s >to: X(t,s) > 0, x;(t,s) 2 0; 

(8) 

2} there exists a solution x(t) of (1) such that x(t) > 0, ±(t) 2 0, t >to. 
Proof. 1) Consider an initial value problem 

r m 

x(t) + 2:: ak(t)x(hk(t)) + 2:: bk(t)x(gk(t)) = f(t), t 2 to, 
k=l k=l 

x(t) = x(t) = 0, t ~to. 

Denote 

(9) z(t) = ±(t)- u(t)x(t), 

where x is the solution of (8) and u is a nonnegative solution of (6). From 
( 9) we obtain 

(10) x(t) = 1: exp {1t u(T)dT} z(s)ds, 

± = z + ux, x = z + itx + uz + u2x = z + uz +(it+ u2)x. 

Substituting±, x into (8) we obtain 

r 

(11) z(t) + u(t)z(t) + 2:: ak(t)z(hk(t)) = 
k=l 

r m 

-(it(t) + u2(t))x(t)- L ak(t)u(hk(t))x(hk(t))- L bk(t)x(gk(t)) + f(t). 
k=l k=l 

Equalities (8) and (9) imply z(t0 ) = 0. Using (10) we can rewrite equation 
(11) in the form 

r 

z(t) + u(t)z(t) + 2:: ak(t)z(hk(t)) = 
k=l 
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f~t(t) exp {- ftu(s)ds}) r exp {!t u(r)dr} z(s)ds+ 
k=l i 9k(t) ito s 

r I 1t {!hk(t) } L at(t)u(hk(t) exp u(r)dr z(s)ds+ 
k=l hk(t) s 

m 
1 

1t {19k(t) } L bt(t) exp u(r)dr z(s)ds+ 
k=l 9k(t) s 

r 

1 

1hk(t) {!hk(t) } 
{;_ aj;(t)u(hk(t)) to exp s u(r)dr z(s)ds+ 

(12) t;;' bk ( t) J:•(t)) exp { J.''(t) u( r )dr} z( s )ds + f ( t), z( t 0 ) = 0. 

Denote by Z(t, s) the fundamental function of (7) and by Fz + f the right­
hand side of the equation (12). Then equation (12) is equivalent to the 
following equation 

(13) z = Hz+p, 

where 

(14) (Hz)(t) = 1t Z(t, s)(Fz)(s)ds, p(t) = t Z(t, s)f(s)ds. 
to ito 

Inequalities (6) and Z(t, s) > 0 yield that if z(t) ~ 0 then (Hz)(t) ~ 0 
(i.e operator His positive). 

Denote 

c(t) = u(t) + u2(t) + L: at(t)u(hk(t)) exp - r u(s)ds + r 1 { t } 

k=l ihk(t) 

L: bt(t) exp - r u(s)ds . 
ml {. t } 

k=l i9k(t) 

Since u is locally absolutely continuous, c E L[to,b] for every b > t 0 , where 
L[a,bJ is a space of all Lebesgue integrable on [a, b] functions with the usual 
norm. 
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Function Z(t,s) is bounded [12] in any square [t0 ,b] x [t0 ,b], hence for a 
certain K > 0, IZ(t, s)l ~ K, b 2: t 2: s 2: t0 . 

Then we have fort E [to, b] 

The kernel of Volterra integral operator H is bounded in each square 
[to, bJ x [to, b], hence [13, p.519] H : L[to,b] - L[to,b] is a weakly compact 
operator and his square is compact operator. The spectral radius of a corn­
pact Volterra integral operator in the space L[a,b] is equal to zero [14, Th.6.2, 
p.143]. 

Therefore the spectral radius of operator H: r(H) = 0. 
Thus if in (13) p(t) 2: 0 then 

z(t) = p(t) + (Hp)(t) + (H2p)(t) + ... 2: 0. 

If f(t) 2: 0 then by (14) p(t) 2: 0. Hence for equation (11) we have the 
following: if f(t) 2: 0 then the solution of this equation z(t) 2: 0. 

Therefore equality (10) implies that the solution of (8) and its derivative 
are nonnegative for any nonnegative right-hand side. 

The solution of this equation can be presented in the form (5), conse­
quently 

(15) x(t) = l.t X(t, s)j(s)ds, x(t) = l.t x;(t, s)f(s)ds. 
~ ~ 

As it was shown f(t) ~ 0 implies x(t) ~ 0 and x(t) ~ 0. Consequently, the 
kernels of the integral operators (15) are nonnegative. Therefore X(t, s) ~ 0 
and x;(t, s) ~ 0. 

Since x;(s, s) = 1 implies x;(t, s) > 0 on some interval [s, s +a] for a 
certain a > 0, the strict inequality X ( t, s) > 0, t > s ~ to holds. 

2) A function x(t) = X(t, t0 ) is a positive solution of the equation (1) 
with nonnegative derivative. 
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The proof is complete. D 
COROLLARY 1. Suppose ak(t) :::; 0 and there exist t0 :2: 0 and a nonnega­

tive locally absolutely continuous function u such that the following condition 
holds 

u(t) + u2(t) + L bt(t) exp -1 u(s)ds :::; 0 ml { t } 

k=l 9k(t) 

where sums contain only terms for which gk ( t) :2: t0 . Then 
1) X(t,s) > 0, x:(t,s) :2:0, t > s > t0 ; 

2} there exists a solution x(t) of {1} such that .x(t) > 0, x(t) :2: 0, t > t0 . 

Proof We have to prove only positiveness of the fundamental function 
of (7). The ordinary differential equation 

z(t) + u(t)z(t) = 0 

has a positive fundamental function. Then inequality ak(t) :::; 0 and Theorem 
2 of [15) imply that the fundamental function of (7) is positive. 0 

We will demonstrate that condition (b1) in Theorem 1 is a necessary one 
for nonoscillation of equation (1) with nonnegative coefficients. To this end 
consider the delay differential inequality 

r m 

(16) jj(t) + .L: ak(t)iJ(hk(t)) + .L: bk(t)y(gk(t)) :::; o, t :2: o. 
k=l k=l 

THEOREM 2. Suppose ak(t) :2: 0, bk(t) :2: 0. If there exists t0 :2: 0 such 
that inequality ( 16) has a positive solution with a nonnegative derivative for 
t > t0 , then there exists t1 :2: t0 such that inequality {6} has a nonnegative 
solution for t :2: it. 

Proof Let y(t) be a positive solution of inequality (16) for t > t0 with 
nonnegative derivative. Then there exists a point t 1 such that hk(t) :2: 
• ,,, ......._ I ·r . ........._ L "tXT ·..~..h .. 1 f r.... ..!-\.... _.._ lo, gk\l) ~ lo, 1 r ~ L1. vve can assume WiL OUL 10SS o generathY ~ua~ 
y(it) = 1. 

Denote u(t) = !ffi, if t :2: t 1 and u(t) = 0, if t < t 1 . Then u is a 
nonnegative locally absolutely continuous on [t1 , oo) function. The equalities 
y(t)- u(t)y(t) = 0, y(t1 ) = 1 imply that 

y(t) = exp {1: u(s)ds}, y(t) = u(t) exp {1: u(s)ds}, 

(17) jj(t) = u(t)exp{1: u(s)ds} +u2(t)exp{1: u(s)ds}. 
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Substitute (17) into (16) we obtain 

exp {it u(s)ds} [u(t) + u2 (t) + t'ak(t)u(hk(t)) exp {- rt u(s)ds} + 
tl k=l Jhk(t) 

( 18) t,' b,(t) exp {- f.:c,) u( s )ds}] + ~" a,(t)Ji(h,(t))+ 
II 

m 

:L bk(t)y(gk(t)) ::::; o, 
k=l 

where the sums .E" contain such terms that t0 ::::; hk(t) < t1 or t0 ::::; gk(t) < 
t 1 , respectively. For t 2:: t0 y(t) 2:: 0, y(t) 2:: 0, ak(t) 2:: 0, bk(t) 2:: 0, 
consequently, the last two terms in (18) are positive. Therefore (18) implies 
inequality (6). D 

In the case hk ( t) = t as a corollary of Theorems 1 and 2 we may obtain 
necessary and sufficient nonoscillation conditions. To this end consider the 
following equation 

m 

(19) x(t) + a(t)x(t) + :L bk(t)x(gk(t)) = o, t 2 o, 
k=l 

and delay differential inequality 

m 

(20) y(t) + a(t)y(t) + L bk(t)y(gk(t)) ::::; 0, t 2:: 0. 
k=l 

COROLLARY 2. Suppose a(t) 2:: 0, bk(t) 2:: 0, k = 1, ... , m. Then for 
equation ( 19) the following statements are equivalent: 

1} There exists t 1 2:: 0 such that inequality (20} has a positive solution 
with a nonnegative derivative for t > t1 . 

2} There exists t 2 2:: 0 such that the inequality 

(21) u(t) + u2 (t) + a(t)u(t) + f'bk(t) exp {-1t u(s)ds}::::; 0 
k=l 9k(0 

has a nonnegative locally absolutely continuous [t2 , oo) solution, where the 
sum .E' contains only the terms for which gk(t) 2:: t2 • 

3} There exists t3 2:: 0 such that X(t, s) > 0, x;(t, s) 2:: 0, t > s 2:: t 3 . 

4) There exists t4 2:: 0 such that equation ( 19) has a positive solution 
with nonnegative derivative for t > t4. 

Remark. For equations without middle term (a(t) = 0) this result was 
obtained in [10]. 
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4. Comparison Theorems. Theorem 1 can be employed for compari­
son of oscillation properties. To this end consider together with equation ( 1) 
the following equation 

r m 

(22) x(t) + L: ak(t)x(hk(t)) + L: bk(t)x(IJk(t)) = o, t ~ o. 
k=l k=l 

Suppose (a1) and (a2) hold for equation (22) and denote by Y(t, s) a funda­
mental function of this equation. 

THEOREM 3. Suppose ak(t) ~ 0, bk(t) ~ 0, and the conditions of 
Theorem 1 hold for some to ~ 0. If 

then equation (22} has a positive solution with a nonnegative derivative for 
t > t 0 and Y(t,s) > 0, ~(t,s) ~ 0, t > s >to. 

Proof By the assumptions of Theorem 1 there exists a nonnegative 
solution u of the inequality (6) for t ~ t0 . Inequalities (23) yield that u is 
also a solution of the inequality 

u(t) + u2(t) + L: at(t)u(hk(t)) exp - r u(s)ds + r I { t } 

~1 h.w 

ml { t } L bt(t) exp -1 u(s)ds ~ 0, t ~ t 0 , 
k=l 9•(t) 

where the sums contain only terms for which hk(t) ~ t0 or !ik(t) ~ t0 , cor­
respondingly. By a comparison theorem (Theorem 2 in [14]), applied to 
equation (7) and the equation 

r 

z(t) + u(t)z(t) + L: ak(t)z(hk(t)) = o, 
k=l 

the fundamental function of the last equation is positive. 

tion 

Hence Theorem 1 implies all the statements of this theorem. 0 
COROLLARY 3. If a(t) ~ 0, bk(t) ~ 0 and an ordinary differential equa-

m 

ii(t) + a(t)y(t) + L bk(t)y(t) = 0 __ _ 
k=l 

is nonoscillating, then equation (19} is also nonoscillatingfor any 9k(t) ~ t. 
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Let us compare now the solutions of problem (2), (3) and the following 
one 

r m 

(24) jj(t) + L iik(t)y(hk(t)) + L bk(t)y(gk(t)) = r(t), t 2: to, 
k=l 

(2.5) y(t) = rp(t), y(t) = 1/;(t), t <to, y(to) =Yo, y(to) = y~. 

Denote by x(t) the solution of (2), (3), by y(t) and Y(t, s) the solution 
and the fundamental function, respectively, of (24), (2.5). 

THEOREM 4. Suppose all the conditions of Theorem 1 hold, x(t) > 0, 
x(t) 2: 0, t > to and ak(t) 2: ak(t) 2: 0, bk(t) 2: bk(t) 2: 0, r(t) 2: f(t); 
<p(t) 2: rp(t), 'lj;(t) 2: 1/;(t), t < t0 ; Yo = x0 , y~ 2: x~. Then y(t) 2: x(t), t 2: 
t0 and Y(t,s) 2: X(t,s) > 0, t > s > t0 . 

Proof Denote by u a nonnegative solution of inequality (6). The inequal­
ities ak(t) 2: ak(t), bk(t) 2: bk(t) yield that the function u is also a solution 
of the inequality, corresponding to (6) for equation (24) and the fundamen­
tal function of the equation corresponding to (7) is positive [14). Hence by 
Theorem 1 Y(t, s) > 0, t > s > t0 . 

Rewrite (2) in the form 

r m 

x(t) + L ak(t)x(hk(t)) + L bk(t)x(gk(t)) = 
k=l k=l 

r m 

- l:[ak(t)- ak(t)]x(hk(t))- l:[bk(t)- bk(t)]x(gk(t)) + f(t). 
k=l k=l 

Hence (see (5)) for the solutions of (2), (3) and (24), (25) we have 

r 

1
t 

x(t) = Yl(t)xo + Y(t, to)x~- L Y(t, s)[ak(s)- ak(s)]x(hk(s))ds-
k=l to 

t, 1: Y(t, s)bk(s)cp(gk(s))ds + 1: Y(t, s)f(s)ds, 
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r 

1
t 

y(t) = Yl(t)yo + Y(t, to)Y~- L Y(t, s)ak(s)'l/;(hk(s))ds-
k=l to 

m t 1t L 1 Y(t, s)bk(s)!jj(gk(s))ds + Y(t, s)r(s)ds, 
k=l ~ ~ 

where cp(gk(s)) = '1/J(hk(s)) = !jj(gk(s)) = '1/J(hk(s)) = 0, if hk(s) >to, 9k(s)) > 
to and x(gk(s)) = O,±(hk(s)) = 0 if gk(t) <to or hk(s) <to. 

Therefore y(t) ~ x(t) > 0, t > t0 . 

Comparing the solutions of equation ( 4) and the corresponding equation 
for Y(t, s) we see that Y(t, s) ~ X(t, s), t > s > t0 , which completes the 
proof. 0 

If in (2), (3) bk(t) :::; 0, hk(t) = t we can obtain a stronger comparison 
result. To this end consider the following two equations 

m 

x(t) + a(t)±(t)- I: bk(t)x(gk(t)) = J(t), t ~to, 
k=l 

(26) x(t) = cp(t), t < t0 ; x(to) = Xo, ±(to) = x~, 

m 

jj(t) + a(t)y(t)- L bk(t)y(gk(t)) = r(t), t ~ to, 
k=l 

(27) y(t) = rp(t), t < to; y(to) =Yo, iJ(to) = Y~· 

Denote by x(t), y(t) and X(t, s), Y(t, s) solutions and fundamental functions 
of (26) and (27), respectively. 

THEOREM 5. Suppose 

!jj(t) ~ cp(t) ~ 0, r(t) ~ f(t) ~ 0, Yo~ xo > 0, y~ ~ x~ ~ 0. 

Then y(t) ~ x(t) > 0, t 2 t0 and Y(t, s) 2 X(t, s) > 0, t > s > t 0 . 

Proof. Inequality (6) for equation (26) is 

(28) 



NONOSCILLATION OF SECOND ORDER DELAY EQUATIO:i'J 245 

Straightforward calculations imply that the function 

( ) 
_ exp{- ft~ a+(8 )d.s} u t - ~t _ _c,-_"----~-

fto exp{- ft~ a+ (T )dT }d8 

is a nonnegative solution of the equation corresponding to inequality (28). 
Then for equation (26) and similar for equation (27) we have X(t, 8) > 

0, Y ( t, 8) > 0, t > 8 > t0 . 

Compare now solution x of (26) and solution z of an equation 

(29) z(t) + a(t)z(t) = f(t), z(to) = Xo, z(to) =X~. 

By straightforward calculations we have that z(t) > 0, t 2: t0 . 

Rewrite equation (29) in the form 

m m 

z(t) + a(t)i(t)- I: bk(t)z(gk(t)) =-I: bk(t)z(gk(t)) + f(t). 
k=l k=l 

Then for solutions of equations (26) and (29) we have 

x(t) = x1 (t)xo+X(t, to)x~ + E 1: X(t, 8)bk(8)cp(gk(8))d8+ 1: X(t, 8)f(8)d8, 

z(t) = x1(t)x0 + X(t, t0)x~ + E 1: X(t, 8)bk(8)cp(gk(8))d8 

- f: lt X(t, 8)bk(8)z(gk(8))d8 + lt X(t, 8)f(8)d8. 
k=l to to 

Hence x(t) 2 z(t) > 0, t > t0 and as a consequence x 1 (t) > 0. Similarly, 
y(t) > 0, Y1 (t) > 0. 

Now the same computation as in the previous theorem imply the asser­
tion of the theorem. D 

COROLLARY 4. Suppose bk(t) ::; 0, x andy are solutions of equation {19} 
and inequality {20}, respectively, such that x(t) = y(t), t::; t0 ; x(t0 ) = y(t0 ). 

Then x(t) 2: y(t), t 2: t0 . 

The proof is based on solution representation (5) and inequality X(t, s) > 
0, t > s > 0. 
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5. Explicit Nonoscillation Conditions. We will employ Theorem 1 
for obtaining explicit sufficient conditions of nonoscillation. 

THEOREM 6. Suppose the following conditions hold 

(30) 

(31) mlt AA L at(r) -h ( )dr:::; 1/e, t ~to, 
k=l h(t) k 7 

where h(t) = mink{hk(t)}. 
Then equation ( 1) has a positive solution with a nonnegative derivative 

fort> to. 
Proof Let u = it· Then inequality (6) takes a form 

and is equivalent to an inequality (30). 
Equation (7) with u = it is 

(32) 
1 T 

z(t) + ?z(t) + z: at(t)z(hk(t)) = o. 
~t k=l 

Substitution z(t) = 7t in equation (32) we obtain 

(33) TR[i v(t) + z: ak(t) -h ( )v(hk(t)) = o. 
k=l k t 

Condition (31) yields [15] that the fundamental function of (33), and there­
fore of {32), is positive. Theorem 1 implies the statement of the theorem. 
0 

COROLLARY 5. Suppose the following condition holds 

1 m 
2a+(t)t + L bt(th/t3gk(t) :::; 1/4, t ~ t0• 

k=l 

Then equation ( 19) has a positive solution with a nonnegative derivative for 
t >to. 
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NONANTICIPATING SELECTORS OF SET-VALUED 
MAPPINGS AND ITERATED PROCEDURES* 

A. CHENTSOVt 

Abstract. An analog of the known method of programmed iterations (MPI} [1]-[10] 
is considered. This method is used [1]-[6],[8, 9] both for solving differential games (DG) 
(see monographs [11]-[14] and for an investigation of other problems [7, 10, 15, 16]. In 
particular, by MPI constructing solving quasistrategies [1]-[6], [8],[17]-[19] was realized 
(in this connection, see generalized constructions [1]-[6]). But, the above-mentioned con­
struction of solving quasistrategies requires the preliminary determination of some (very 
important) auxiliary objects; of course, these objects (the value of DG, the stable bridge) 
represent a very essential interest for solving the corresponding DG. Now, it is important 
to note the following fact: under the employment of constructions [1]-[6],[8] the solving 
quasistrategy is defined in terms of the above-mentioned (auxiliary) objects. In contrast 
to the above-mentioned approach in the given paper a "direct" method of constructing 
set-valued "quasistrategies" on the basis of iterations is considered. 

Key Words. Nonanticipating selector, set-valued mapping, iterated procedure, qua­
sistrategy. 

1. Introduction. In many concrete problems it is important to con­
struct an useful control in the form of the nonanticipating response to the 
realization of a priori indefinite factors. Sometimes, it is advisable to consider 
the motion of a system in the form of the above-mentioned response. We 

consider the unit "pointer" I ~ [0, 1 [ and the set C of all piecewise constant 
and continuous from the right (real-valued) mappings c(·) : I -----* (-1, 1]. 
We call an operator o: : C -----* C nonanticipating mapping in the case, when 

* Supported by Ministry of RF on Higher Education, project no. 97-0-1.9-19, and In­
ternational Science and Technology center, project no. 1293. 

t Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sci., 
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((v1(·) I [0, t[) = (v2(·) I [0, t[)) =? 

(1.1) ((a(v1(·)) I [0, t[) = (a(v2(·)) I [0, t[)). 

We use in (1.1) the natural notion of a restriction of a function to a nonempty 
subset of domain of definition. The definition (1.1) is analogous to the corre­
sponding one of [17] and many other investigations. It is natural to introduce 
a set-valued variant of (1.1). In this case we consider in the capacity of a a 
mapping from C into the family of all subsets of C. We obtain a set-valued 
variant of pseudo-strategies of [20]. In addition, for ( 1.1) it is possible to 
choose a set-valued analog. Namely, under conditions of (1.1) it is possi­
ble to introduce the following requirement on the choice of the considered 
set-valued mapping a: 

(1.2) 
((v1(·) I [0, t[) = (v2(·) I [0, t[)) =? ( {(u(·) I [0, t[) : 

u(·) E a(v1(·))} = {(u(·) I [O,t[): u(·) E a(v2(·))}). 

Of course, here a(v(·)) is a subset of C under v(·) E C. The property 
(1.2) defines an important case of the above-mentioned set-valued "pseudo­
strategies" (see [20]). Here we have a set-valued quasistrategy (we use the 
terminology of [17]). In many problems it is possible to consider an "arbi­
trary" set-valued mapping C operating on C; namely, C(v(·)) c C under 
v(·) E C. The mapping C corresponds to a goal of the investigated prob­
lem. In addition, v( ·) is an infinite-dimensional parameter influencing on the 
attainment of the above-mentioned goal. We interpret C(v(·)) as the set of 
controls u(·) resolving the problem for the parameter v(·). But, it is possible 
that a priory v(·) is not known. The values v(t) become known only with 
respect to an development of v( ·) as a time function. Therefore, the control 
u(·) E C(v(·)) is formed as a reaction on v(·) with the validity of require­
ments analogous to (ref1.1) and (ref1.2). As a result, we obtain t.he problem 
of constructing nonanticipating (set-valued) selectors of the given set-valued 
mapping. 

2. General definitions. We use the set-theoretic symbolics including 
quantors, propositional connectives and other current stipulations; denote by 
6 

the equality by definition and use the natural abbreviation def. If A and B 
are sets, denote by BAthe set of all mappings from A into B; for each choice 
of a mapping f E BA and a set C, C C A, we denote by (! I C) the natural 
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restriction of the mapping f to the set C (see [21, Ch. I]). For the designation 
of superposition (of mappings) we use the natural symbol o. It is advisable 
to remind some notions of general topology. Namely, we use the usual notion 
of a subspace of a topological space (TS). Moreover, below we use the natural 
notions of compact, countably compact and sequentially compact subsets in 
arbitrary TS; in these definitions we operate on the corresponding subspace 
of the given TS (see [22]-[24]; in particular, see [24, p.239]). We use nets 
and the Moore-Smith convergence (see [22]-[24]). It is convenient to accept 
the following stipulation in the connection with the designations for nets. 
Namely, we denote each net as the triplet for which the first elements compose 
a nonempty directed set and the third element is a mapping defined on the 
above-mentioned (directed) set; if the last mapping has own values in the 
given set H, we call the considered net as a net in H. Finally, if ( D, ~, h) 
is a net in the set H and H is equipped with the topology T, then we call 
(D, ~'h) as a net in TS (H, T). If (D, ~'h) is a net in TS (H, T) and x E H, 
then we denote by (D, ~'h) ~ x the Moore-Smith convergence [22, 23] of 
(D, ~'h) toxin the sense of topology T. For the convergence of a sequence 
(xi)ie . .v in TS (H, T) to a point x E H we use the more traditional designation 
(xi)ie.N' ~ x. Of course, in the last case we have the following particular 

case: in the capacity of (D, ~) we use the positive integers N t::. {1; 2; ... } 
with the ordinary order ::; of N (clearly, that ::; is a direction of N). If ( ~' <<) 
and (D, ~)are nonempty directed sets, then we denote by (I sot)[~;«; D; ~J 
the set of all operators l E D6. such that 

(2.1} 
('ridE D 3b E ~ : d ~ l(b))&('r/61 E ~ 'r/62 E ~ : 

(61 « 62) ==> (l(6I) ~ l(62))). 

In (2.1) the isotone mappings of directed sets are defined. This construction 
is coordinated with the general notion of a compactness (see [22, 23]). It is 
important to note the following particular case of (2.1): (D, ~) = (N, ::;). 
In this connection we suppose for each directed set (D, ~), D =/:; 0, that 

(isot)[D; ~] t::. (Isot)[D; ~;N; ::;). The last definition is useful under oper­
ations with countable compact sets. The corresponding property is realized 
by the procedure that is analogous to the construction of the passage to a 
subnet by an isotone mapping considered in {22, Ch. 2]. But, in the case of 
the consideration of countable compact sets we apply elements of (isot)[D; ~] 
in the capacity of isotone mappings of [22]. Below we use the following des-

ignation N0 t::. N U {0}. So, No = {0; 1; 2; ... }. In the following the natural 
notion of the power of a mapping is used. If H is a nonempty set, then we 
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denote by rrH the identical operator from HH: rrH E HH and rrH(h) ~ h under 
hE H. If His a nonempty set and T E HH, then we define the sequence 

(2.2) 

by the following natural conditions: (T0 6 rrH)&(Vs EN: T 8 =To Ts-l ). 
In terms of (2.2) it is possible to realize the basic constructions of MPI [1]-[8]. 
In the given investigation we operate by powers of mappings defined in terms 
of (2.2). For some specific kinds of such mappings we introduce below the 
infinite power. Namely, we use the above-mentioned operation of the raising 
to the infinite power for set-valued mappings. 

3. Nonanticipating set-valued mappings and the problem of a 
selection of arbitrary set-valued mappings. vVe consider an abstract 
construction of the determination of nonanticipating set-valued mappings. 
The natural concrete variant of this procedure is the iterated construction 
of [1]-[8]. But, it is possible to represent other concrete variants of the 
realization of MPI. 

We fix: 1) nonempty sets X andY; 2) a nonempty family X ofnonempty 
subsets of X; 3) TS (Y,r), Y =f 0; 4) a nonempty set Z, Z C yx; 5) a 
nonempty set n, n c yx. Suppose that ®X ( T) is the natural topology of 
the set Y x corresponding to the Tychonoff product of samples of TS (Y, T) 
with the index set X. Consider the set Z as a subspace of the Tychonoff 
product (Yx, ®x (r)). vVe equip the set Z with the topology B induced [22, 
Ch. 1] from (Y x, ®x ( T)). Denote by X (by z) the family of all subsets of X 

(of Z). Let X 
6 

X\ {0}. Then X c X. In addition, zn defines the basic 
kind of set-valued mappings considered below. Moreover, we use "partial'' 
set-valued mappings. Let E be the family of all subsets of n. Denote by E0 

the family of all non empty sets of E : E0 
6 

E \ { 0}. vVe consider elements of 
zT (where T E Eo) as partial set-valued mappings. vVe use operators 1i E zT 
under T =f n for constructing a parallel version of MPI. 

Example 3.1. Consider (see section 1) the known concrete variant of 
the general setting. This variant corresponds to the case of control problems. 

Namely, in this example suppose that X 
6 

I = [0, 1 [ and X ~ {[0, t[: t E 

]0, 1[}. So, (X, X) is realized. Suppose that (in this example) Y ~ [-1, 1] and 

n 6 
C (see section 1). We interprete functions w E n as unknown controls or 

controls of" opponent". Moreover, we suppose that in the given case (Y, r) is 
the real line IR with the "ordinary" I · !-topology TJR. In the capacity of Z we 
consider (in this example) the set C0 (I) of all uniformly continuous functions 
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from X into R vVe introduce the set U of all Borel functions U from X into 
JR. with the followingproperty: for each t E X =I the inequality I U(t) I~ 1 
takes place. Then, we suppose that principle of constructing mappings from 
n into Z is defined by integration of sum of controls U E U and V E n. This 
corresponds to the simplest version of DG. So, we define under V E n the 
set x:(V) of all functions 

t 

t ~ I U(O>.(d~) +I V(Od~: [0, 1[----> JR. 

(O,t( 0 

(>. is the restriction of Lebesque measure to a-algebra of Borel subsets of 
X = [0, 1[), where U E U. Of course, x(V) C Z = C0(I). Fix functions 
a* : I----> JR. and /3* : I----> llt If V E n, then we suppose that 

Xo(V) 
6 

{x(·) E x:(V) IV~ E I: a*(~)~ x(~) ~ /3.(~)}. 

vVe obtain a compactum in the sense of the metric of the uniform convergence 
in Z. So, in the form of Xo(·) we have a compact-valued mapping on n. 

Returning to the general case we note that in the following we consider 
two nonempty functional sets nand Z. In addition, X is the common domain 
of all functions of rr and Z. Sets of X are used for the determination of 
nonanticipating reactions of type z = z(w), where w E n and z E Z. The 
corresponding strict definition is realized in terms of restrictions of the above­
mentioned functions to sets of X. 

Remark 3.1. Consider the case connected with (1.1),(1.2). Namely, 
in this case it is possible to use the following (natural for control problems) 
stipulation: X = I; T = Y = [-1, 1]; T is (in this example) the natural 
I · !-topology of [-1, 1]; n = Z = C; X = {[0, t[: t E]O, 1[}. Of course, 
in the given case all following constructions are coordinated with (1.1) and 
(1.2); moreover, see [17, 20). 

Now we return to the general case. Introduce new definitions. If T E 
Eo, wEn and A EX, then we suppose 

(3.1) 
!::. 

(Ge)[T;w I A]= {t E T I (w I A)= (t I A)}; 

in the case wET we have in (3.1) the nonempty set. Moreover, Vw En 'v'A E 
X: 

(3.2) Do(w I A)!::. (Ge)[D;w I A]= {wEn I (w I A)= (w I A)} E Eo. 

If the triplet (T,w, A) corresponds to the conditions defining (3.1), then 

(3.3) (Ge)[T;w I A]= T n Do(w I A). 
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In (3.1) - (3.3) we have germs of elements of 0; by these germs we introduce 
nonanticipating mappings and a specific operator acting in the set 'l7, where 
T E E0 . The case T = n is basic. If T E Eo, then we suppose that 

(3.4) 

is defined by the following condition; namely, 'VC E zT 'Vw E T: 

(3.5) I'T(C)(w) 
6 {f E C(w) I 'VA EX 'Vw E (Ge)[T; w I A] 

3j E c(w) : U 1 A) = (! 1 A)}. 

In terms of (3.4),(3.5) we introduce the general notion of a nonanticipating 

mapping. If T E E0, then N[T) 6 {C E zT I C = /'T(C)} is the set of all 
nonanticipating mappings with the domain T. Suppose 'VT E Eo \;/a E zT: 

(3.6) 
6 No[T; a)= {C E N[T]I 'Vw E T: C(w) c a(w)}. 

In (3.6) we consider the set of all nonanticipating mappings that are set­
valued selectors of the given (set-valued) mapping a. We have in the form 

r 6 /'n an element of the set Z of all operators acting in the set Z11• So, for 
C E z11 and wE n we obtain in the form of r(C)(w) the set of all f E C(w) 
such that 

(3.7) 'VA EX 'Vw E rlo(w I A) 3j E C(w): (f I A)= (j I A). 

The property (3. 7) is used in the basic definition of nonanticipating set­
valued global mappings. The mapping r: Z11 ~ z11 we use for the iterated 
determination of elements of the set 

(3.8) N 
6 

{C E Z 11
1 f(C) = C}. 

As a corollary; we have the following basic representation for nonanticipating 

selectors of a set-valued mapping. Namely, \fa E Z 11
: N0 [a) 

6 
N0[0; a). But, 

now it is advisable to introduce basic structures of Z11 used in the following. 
If H 1 E Z11 and H2 E Z11, then suppose def: 

(3.9) 

We use in the following the notion of a monotonocity of r only in the sense 
of ( 3. 9). Moreover, in the sequel we use the "ordinary" set-theoretical con­
vergence of sets [25, Ch. I): if His a set, (Ai)ieN is a sequence of subsets of H 
and A is a subset of H, then (Ai)ieN l A denotes that A is the intersection 
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of all sets Ai, i EN, and (moreover) Vk E N : Ak+1 C Ak. If (Ci)iEN is a 
sequence in zn and C E zn, then def: 

(3.10) ((Ci)iEN -l!- C)~ (Vw E S1: (Ci(w))iEN 1 C(w)). 

We equip zn with the order (3.9) and with the convergence (3.10). So, we 
have the basic space (zn, ~' -U-). Returning to (3.8), we obtain that No [a] = 
{ C E N I C ~ a} under a E zn. By (3.3) the following useful property is 
used. Namely, for C E zn, T E 2::0 and wET we have 

(3.11) f(C)(w) C rr((C I T))(w) C C(w). 

From (3.11) we obtain VC E N \IT E 2::0 : (C I T) E N[T]. Moreover, we 
have \Ia E zn \Ia E No [a) \IT E :Eo: 

(3.12) (a IT) E No[T; (a IT)]. 

In the connection with (3.12) we note the important property: under a E zn 
and T E E0 it is possible that in the set N0 [T; (a I T)] singular elements are 
contained. It is impossible to consider these elements as mappings on the 
left-hand side of (3.12). 

Example 3.2. Return to the particular case connected with (1.1), (1.2). 
We use the concrete definition of Remark 3.1. Consider a E zn = zC such 
that under v*(·) E C the v*(·)-image a(v*(·)) is the set of all constant controls 
u*(·) E C, u*(t) = u* E [-1, 1], for which 

1 1 

J u*(t)dt + j v*(t)dt = 0. 
0 0 

Then a(v(·)) =I= 0 under v(·) E C. If a E zn = zC has the property (1.2) 
and (moreover) a(v(·)) c a(v(·)) under each v(·) E C, then a is the "empty­
valued" mapping. Namely, under the above-mentioned conditions the prop­
erty a(v(·)) = 0 takes place. Fix v0 (·) E C and introduce one-element set 

To 
6 

{vo(·)}. Then ao 
6 

(a I To) is the trivial nonanticipating (on T0 ) map­
ping with nonempty values a0(t), t E T0 . Consequently, it is impossible to 
obtain a0 in the form (3.12). 

4. Some general properties. We consider the basic space (zn, ~' .ij-) 
and the mapping r E Z. Denote by Z the family of all sets H, H c zn, 
such that V1i E H : f(1i) E H. Of course, elements of Z are r -invariant 
subspaces of zn and only they. If R is a subfamily of Z, then the union of 
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all sets R E R is an element of Z; in the case R =I= 0 the intersection of all 
sets R ERin an element of Z. Finally, 0 E Z and Z 11 E Z. 

Denote by Z the family of all sets H, H c z11 , such that for each 
sequence (Hi)ieN in H and for each mapping HE Z11 the implication 

((Hi)ieN .ij. H)===> (HE H) 

takes place. Then it is possible to call H E Z a closed set in the space ( Z 11, .{j.); 
the last space is the structure equipped with the convergence of sequences. 
Of course, 0 E Z, Z11 E Z; if R is a nonempty subfamily of Z, then the 
intersection of all sets R E R is an element of Z. For an investigation of 
Z and Z in terms of the mapping r we consider a topological construction 
connected with ( Z, B). 

So, let: IF be the family of all closed in ( Z, B) subsets of Z (of course, 
IF c z); F be the family of all sequentially closed [26] in (Z, B) subsets of Z; 
JK be the family of all compact [23, Ch. 3] in (Z, B) subsets of Z; }( be the 
family of all sequentially compact [24, p. 239] in (Z, B) subsets of Z; C be the 
family of all countably compact [24, p. 239} in (Z, B) subsets of Z. Moreover, 

we suppose 1r 
6 

C n IF, obtaining the family of all closed countable compact 
in ( Z, B) subsets of Z. Then IK U JC C C. If (Y, T) is a Hausdorff space, then 
(Z, B) is a Hausdorff space and IK C 1r; moreover, in this case (of a Hausdorff 
space (Y, T)) the inclusion JC C F takes place. 

PROPOSITION 4.1. If (Y, T) is a Hausdorff space, then JK11 E Z and 
K11 E Z. 

Proof. Let U E JK11 and w E n. It is sufficient to establish the property 
f(U)(w) E IF (see (3.5),(3.7)). We use the known Birkhoff theorem about the 
representation of the closure operator (see [21]-[24]). Let (D, ~' <p) be a net 

in f(U)(w) and fEZ. Moreover, let (D, ~' <p) ~f. Of course, f E U(w). 
Here we use two following properties: 1) U(w) E IF; 2)<p(d) E U(w) under 
d E D. Let A E X and w E f20 (w I A). We use the axiom of choice 
and (3.7). Let rjJ be a mapping from D into U(w) for which Vd E D : 
(<p(d) I A) = (rj;(d) I A)). But, U(w) E JK. Therefore (see (22, Ch. 2]), it is 
possible to choose j E U(w ), a nonempty directed set (~, ~) and a mapping 

l E (/sot)[~;~; D; ~]for which the convergence (~, ~' rjJ o l) ~ j takes 
place. Then by known [22, 23] properties of Tychonoff products and relative 
topologies we have Vx EX: 

(4.1) ((~, <<, (rj; o l)(·)(x)) ~ f(x))&((~, ~' (<p o l)(·)(x)) ~ f(x)). 

In ( 4.1) and below we use "ordinary" stipulations: (<pol) ( ·) ( x) and ( rj;ol) ( ·) ( x) 
are mappings from D into U(w) and U(w) with the values (<p o l)(o)(x) and 



NONANTICIPATING SELECTORS 2.57 

(<Po l)(b)(x) respectively. \Ve use (4.1) in the case x E A. Then by the 
choice of <P we have (f I A) = (/I A), since (Y, T) is a Hausdorff space. So, 
f E U(w) : (f I A) = (/ I A). But, the choice of A and w was arbitrary. 
Therefore, from (3.7) we have f E f(U)(w ). Since the choice of (D, ~' <p) 
and f also was arbitrary, we have f(U)(w) ElF. The last property reduces to 
the property of a compactness of f(U)(w). The statement lliP E Z has been 
established. The proof of the property KP. E Z is analogous (here the more 
simple "sequential" procedure is used that is in essence analogous to [4]-[6]). 

It is possible easily to show that 1r11 E Z. 
PROPOSITION 4.2. lf(Y, T) is a T1 - space {22}-(24}, (Ci)iEN is a sequence 

in 1r11 and C E z11, then 

Proof. Let (Ci)iEN be a convergent (to C) sequence in 1l'11 (see (3.10)). 
Since r is the monotone (in the sense of (3.9)) mapping, it is sufficient to 
establish that under w E n the intersection of all sets f(Ci)(w), i E N, is 
a subset of f(C)(w). Fix w E n. Let <p be an element of the intersection 
of all sets r( Ci) ( w), i E N. Then <p E C ( w), since C ( w) is the intersection 
of all sets Ci(w ), i E N; see (3.10). Fix A* E X and w* E 0 0 (w I A*). 
Choose ( <pi)iEN from the product of all sets Ci(w*), i EN, with the property 
Vj EN: (<p I A*) = (<pj I A*); in this connection see (3.7). In addition, 
( Ci ( w*) )iEN converges monotonically to C ( w*). As a corollary, ( <p;)iEN is the 
sequence in C1(w*) E <C. Therefore, it is possible to choose <p* E C1(w*), a 
nonempty directed set (D, ~) and a mapping l E (isot)[D; ~] for which 

(4.2) 

Of course, from (4.2) the following property follows. Namely, Vx EX: 

(D, ~' (IPi(d)(x))dED) ~ <p*(x). 

By the basic property of T1-space [22]-[24] we have the equality for restric­
tions: (<p I A*) = (<p* I A*). By properties of l we have <p* E Cn(w*) under 
n E N (here we use the following property: Ck(w*) E lF, k E N). As a 
corollary, we obtain <p* E C(w*), ( <p I A*) = ( <p* I A*). Since the choice of A* 
and w* was arbitrary, we have <p E f(C)(w). 

Note that in the case when (Y, T) is a Hausdorff space, the property 
OC11 E Z takes place. From Proposition 4.2 the useful statement follows. 
Namely, we have 
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PROPOSITION 4.3 ([27]). Let (Y, 7) be a Hausdorff space, (Ci)ieN be a 
sequence in K0 and C E z0 . Then 

(4.3) 

If (Y, 7) is a Hausdorff space, then KP E Z. The following statement 
takes place. 

PROPOSITION 4.4 ([27]). If (Y, 7) is a Hausdorff space, (Ci)ieN is a 
sequsence in KP and C E z0 , then the implication (4.3} is true. 

The proof is a highly obvious "sequential version" of the corresponding 
proof of Proposition 4.2. 

PROPOSITION 4.5. Let (Y, 7) be a T1 - space {22}-{24}. Then NnT0 E Z. 
Proof. Let (Ci)ieN be a sequence in N n T0 and C E Z0 . Moreover, 

let (Ci)ieN .ij. C. Then C E ~ (we know that T0 E Z). If j E N, then 
Ci = f(Ci) (by definitions of section 3). But, from Proposition 4.2 we have 
the convergence (f(Ci))ieN .ij. f(C). As a corollary, f(C) =C. So, C EN. The 
proof is completed. 

PROPOSITION 4.6. If (Y, 7) is a Hausdorff space, then N n K0 E Z. 
The proof follows from Proposition 4.3. 
PROPOSITION 4.7. If(Y,7) is a Hausdorff space, then NnK0 E Z. 
The proof obviously follows from Proposition 4.4. In conclusion of the 

present section we note a useful corollary. Namely, if (Y, 7) is a Hausdorff 
space, then K0 E Z n Z and K0 E Z n Z; moreover, in this case the basic op­
erator r has the property of the sequential continuity on oc0 (see Proposition 
4.3) and the analogous property on K0 (see Proposition 4.4). So, for natural 
case of a Hausdorff space (Y, 7) the spaces JK0 and K0 are very "good". 

5. The basic iterations method. We consider iterated procedures in 
z0 and in zT; where T E 'E0 . In this section the first case is discussed. First 
we will do several observations. If M is a subset of N (see (3.8) ), then the 
mapping 

(5.1) w ~-----+ U C(w): n-- z 
CEM 

is an element of N. As a corollary, we have the following property: if a E Z0 

and M is a subset of N0 [a], then (5.1) is an element of No[a] (note that 
N0 [a] =f: 0; the "empty-valued" mapping a0, for which a0(w) = 0 under 
w E 0, is an element of No [a]). In particular, the last statement takes place 
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in the case Jvf = N0 [a]. So, for a E z 0 in the form of the mapping (na)[a] of 
the kind 

(5.2) w ~ U C(w) : r.l ---> z 
CENo[a] 

we have the greatest in (z 0
, ~) element of No [a]. The determination (under 

a E z0 ) of the mapping (na)[a] (5.2) is our basic problem. So, Va E z0 : 

(5.3) ((na)[a] E N0 [a])&(VC E N0 [a]: C ~ (na)[a]). 

For the attainment of the above-mentioned goal we use the iterated procedure 
on the basis of r (see section 3). Moreover, below we consider analogous 
procedures on the basis of the operators (3.4),(3.5). Therefore, we introduce 
general definitions in terms of the mappings (3.4). In addition, we use the 
natural construction (2.2). Then forT E :E0 we have in the form of~~ the 
identical mapping acting in zT and (as a corollary) "t~ = liH IH=zr; under 
k EN the equality~~ =ITo ~~- 1 takes place. In particular, (rkhENo is a 
sequence in Z; r 0 = lg and V k E N : rk = r o rk- 1. In terms of the last 
sequence we introduce the basic kind of an iterated process. Under C E z0 

we have r 0 (C) = C and the following property: if m E N0 , n E .NO and 
m _::; n, then rn(C) ~ rm(C). By Proposition 4.1 we obtain that in the case, 
when (Y, r) is a Hausdorff space, Vn E .N0: 

Now, we introduce in the consideration an infinite power of set-valued map­
pings. If T E :E0 , then we define the mapping l'r operating from zT into ;zT 

by the following rule; namely, VC E zT Vt E T: 

(5.5) I~(C)(t) 6 n I~(C)(t). 
kENo 

Of course, we have r= = 1!1; in addition, for C E z0
, w E r.l and m E .N0 

we have in the form of r=(C)(w) the intersection of all sets rk(C)(w), k E 
.No, m.:; k. Note that VC E z 0 : 

(5.6) 

The relation (5.6) is a simple corollary of the definition (5.5). The following 
statement is true. 

PROPOSITION 5.1. Let (Y, r) be a Hausdorff space. Then 

(VC E oc0 
: r:>O(C) E oc0 )&(VC E K0 : r=(c) E K0 ). 
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The proof follows from properties established in section 3 and from the 
relations (5.4),(5.6). We have the following 

PROPOSITION 5.2. If (Y, T) is a Hausdorff space, then 

The proof follows from Propositions 4.3, 4.4 and from (5.6). 
From the monotonocity of r in the sense of (3.9) we have Va E zn V1i E 

No[a]: 

(5.7) 

Along with (5.7) it is advisable to note the obvious monotonocity of roo in 
the sense of (3.9) and such simple fact that VC E zn : f<Xl(C) ~ C. The 
following important statement is true. 

THEOREM 5.1. If (Y, T) is a Hausdorff space, then \fa E oc0 U KP : 
f 00 (a) = (na)[a]. 

The proof of Theorem 5.1 is the obvious combination of Proposition 5.2 
and (5.7). 

COROLLARY 1. Let (Y, T) be a Hausdorff space. Then 

The proof is the natural combination of Proposition 5.1 and Theorem 5.1. 
The last corollary is a highly general fact meaning the validity of important 
hereditary properties of the greatest nonanticipating set-valued selector with 
respect to the initial set-valued mapping. 

Note that N = {C E zn I c = f 00 (C)}. We suppose VT E Eo vc E zT: 

(5.8) (DOM)[CJ b. {wET I C(w) i= 0}. 

We have in (5.8) the effective domain of set-valued mapping. Now we consider 
the basic case T = n (see (5.8)). The following statement is true. 

THEOREM 5.2 ([27]). If (Y,T) is a Hausdorff space and C E oc11 U K11 , 

then 
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The proof follows (in the case C E IK0
) from the known property of cen­

tered systems of closed sets in compact spaces [21 ]-[24]. In "sequentially 
compact" case the standard procedure of the choice of an convergent subse­
quence is used. From Theorem 5.2 in the case of a Hausdorff space (Y, T) we 
have vc E JK0 u KP\:fw E n: 

(f00 (C)(w) = 0) {=::=} (3n EN: rn(C)(w) = 0). 

Now we consider the important question about the existence of nontrivial 
nonanticipating set-valued mappings being selectors of the initial set-valued 
mapping. The above-mentioned nontriviality is identified with the property 
(DOM)[C] = n for the considered mapping C E z0 . Suppose \:fa E z0 : 

(5.9) N> [a] ;::, {a E No [a] I (DOM)[a] = n}. 

It is possible to consider elements of the set (5.9) as analogs of set-valued 
quasistrategies of [1]-[6],[8, 18, 19]. Of course (see (5.7)), \:fa E Z0

: (~[a] =f:. 
0) ===} ((DOM)[r00 (a)] = n). If (Y, T) is a Hausdorff space, then \:fa E 

oc0 u KP: 

(5.10) (N>[a] =j:. 0) {=::=} ((DOM)[f00 (a)] = n). 

Under the proof of (5.10) Theorem 5.1 and (5.7) are used. It is useful to 
introduce in the consideration the analogs of (one-valued) quasistrategies of 
[17, 20]. Of course, we consider the "quasistrategies" solving some problem 
which by initial set-valued mapping is defined. Namely, if C E Z0 , then we 
denote by n° [C] the set of all 

hE II C(w) 
wEfl 

such that 

\:fw En VA EX \:fw E Oo(w I A): (h(w) I A)= (h(w) I A). 

In this connection we recall (1.1) and constructions of [17, 20]. IfC E z0 , then 
from n°[C] =f:. 0 the statement (DOM)[f00 (C)] = n follows. In the connection 
with the problem of the existence of nonanticipating one-valued selector of 
nonanticipating set-valued mapping we note [28]. It is advisable to consider 
"partial" nonanticipating set-valued mappings. If C E zn, then we denote 
by ~0 [C] the set of all mappings 1t E No [C] such that (DO M) ['H.] =f:. 0. It is 
obvious that under C E z0 from ~0 [C] i= 0 the statement (DOM)[f00 (C)] ::fi 
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0 follows. If (Y, r) is a Hausdorff space and C E ocn U Kn, then the statements 
~0 [C] =I= 0 and (DOM)[f00 (C)] =I= 0 are equivalent. Note that in Example 3.2 
under a E zn with the property a(v(·)) =I= 0, v(·) En= C, we have ~0 [a] = 

0 (we leave the given obvious proof to the reader). From Propositions 4.6 
and 4.7 the following statement follows. 

PROPOSITION 5.3. Let (Y, r) be a Hausdorff space, C E zn and (Ci)iev 
is a sequence in zn. Moreover, let: (Ci)ie.N be the sequence in ocn or (Ci)ie.N 
be the sequence in Kn. Then 

In the conclusion of this section we consider briefly a construction con­
nected with the notion of "universal" fixed points. In this part we use a 
"stratification" of the operator r. If A E X (see section 3), then we intro­
duce the operator fA E Z for which VC E zn Vw E 0: 

r A(C)(w) 
6 

{! E C(w) I Vw E Oo(w I A) 3j E C(w): 

(5.11) (! I A) = (j I A)}. 

From (3.7) and (5.11) we have the obvious property: if C E zn and w E 0, 
then f(C)(w) is the intersection of all sets r A(C)(w), A E X. As a corollary, 
we obtain the equality N = {C E zn I VA EX: r A(C) = C}. But, the basic 
property is defined by the following practically obvious statement. 

PROPOSITION 5.4. If A EX, then r A 0 r A= r A· 
The proof follows from (5.11). We obtain the important property of 

idempotency of r A, where A EX. As a corollary, we have VA EX: 

(5.12) I .t- \I Al 6 r f'7 ,- '71!1 I T" lt'7\ _ f'7} _ {T" I'Ll\ • 'L/ ,- '71!11 
U·P·J[..tl.j-'- 1.~ t tL.J 1 ~ A~'-'J- '--' - ~ A~'"J. '" c: /L.J J· 

From (5.12) many useful corollaries follow. It is obvious that, N is the in­
tersection of all sets (f.p.)[A], A E X. So, nonanticipating set-valued map­
ping are "universal" fixed points and only they. It is useful to supplement 
this statement by some properties connected with the basic problem of the 
(nonanticipating) selection. Proposition 5.4 is the basis of following con­
structions; the corresponding proofs are very simple. If a E zn and A E X, 

then suppose (J.p.- a)[A] 
6 

{C E (J.p.)[A] I C ~a}. From definitions of 
section 3 the obvious statement follows: if a E zn, then No [a] is the inter­
section of all the sets (J.p. - a)[A], A E X; Under a E zn it is useful to 
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introduce S[a] ~ {1i E zn IH ~ a}; moreover, if A E X, then we have 
(J.p.- a)[A] = {f..1(C): C E S[a]} (see Proposition 5.4). 

Until the end of this section we suppose that (Y, T) is a Hausdorff space. 
By analogy with Proposition 4.1 the following property is proved: if A EX, 
then 

On this basis it is possible essentially to supplement the above-mentioned 
representation of N: the set N n IK0 (the set N n KP) is the intersection of 
all the sets {C E IK.0 I r A(C) = C} (of all the sets {C E KP I r A(C) = C} ), 
A E X. These last sets assume a more simple representation connected with 
Proposition 5.4. Namely, \lA EX: 

( {C E IK0 I r A(C) = C} = (f.p.)[A] n oc0 = {r A(1i): 1i E oc0 } )& 
( {C E KP 1 r A(C) = C} = (f.p.)[A] n KP = {r A(1i) : 1i E K0 } ). 

For completion of these representations we consider again the problem of 
the nonanticipating selection of set-valued mappings. If M E z0 , then we 

introduce in the consideration two following families: Soc[M] 6 S[M] n ocn = 
{C E IK.0 I C ~ J\!1} and SK:[M] ~ S[M]nK0 = {C E K 0 I C ~ M}. Moreover, 
we have \lA EX \IM E z.O: 

((oc- J.p.- M)[A] ~(J.p.- M)[A] n oc0 = {r A(C): 

(5.13) C E Soc[M]} )&((K- f.p.- M)[A] 6 (J.p.- J\,f)[A] n Kn = 

= {r A(C) : c E Sx:[NJ]). 

We omit obvious proofs connected with Proposition 5.4. Return to the im­
portant case corresponding to the given compact-valued initial set-valued 
mapping and the analogous mapping with sequentially compact values. In 
addition, \1M E z 0 : 

(No[M]nocn = n (oc- f.p.-M)[A])&(No[M]nK0 = n (K- f.p.-M)[AJ). 
AEX AEX 

(5.14) 
It is advisable to consider (5.13) and (5.14) in a natural combination. We 
restrict ourselves to the consideration of the case of a compact-valued initial 
mapping. Note that (5.14) is especially important by virtue of Theorem 5.1. 
So, under ME IK.0 we have f 00 (M) = (na)[M] E N0 [M] noc0 . In addition, in 
this case we have (see (5.14)) in the form of f 00 (M) the greatest in (zn, ~) 

element of intersection Moc 6 No [J\,1] nocn of all sets (oc- f.p.- M)[A], A E X; 
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namely, (na)[M] = f<'"(M) E Moc and V?t E Moc : 1t ~ f 00 (M). As a 
corollary, we have the following scheme of the determination of ( na) [ N/] = 
f 00 (.i\1), where M E oc11 . Namely, under A E X it should be constructed 
the set {f A(C) : C E Soc[M]} (or (oc- J.p.- M)[A]). Later we consider all 
common elements of the families {r A(C) : C E Soc[M]}, A E X, obtaining 
(as a result) Moc. Among them we choose the greatest element determined 
by f 00 (M); so, (na)[M] = f 00 (.i\1) is the greatest element of Moc. Now we 
note a natural sequential version. Namely, let (until the end of the given 
section) M E KP; it is possible to consider the intersection Mx:. of all sets 
(K:- f.p.-M)[A] = {f A(C): C E Sx:.[M]}, A EX. Then (na)[.i\J] = f 00 (M) 
is the greatest element of Mx:.; so, f 00 (M) E Mx:. and V?t E Mx:. : 1t C 

f 00 (N/). So, for two above-mentioned cases (M E oc11 and lvf E K:11 ) we 
obtain a distinctive "algorithm on functional level". For this "algorithm" 
the operation connected with Proposition 5.4 is characteristic: the image 
of a set in the space z11 under the operation of the mapping r A should be 
constructed. 

6. The local analysis of nonanticipating set-valued mappings. 
In this section we consider questions connected with a natural localization of 
"global" nonanticipating mappings. In particular, we investigate the follow­
ing important question: when the initial set-valued mapping does contain a 
nonanticipating set-valued selector with nonempty values? First we do sev­
eral absolutely simple observations. Denote by !HI the family of all sets H E ~ 

such that 

(6.1) Vw E H: U Oo(w I A) C H. 
AEX 

It is possible (see (3. 7),(3.8)) to verify the following obvious property: if 
C E N, then (DOM)[C] E !HI and n \ (DOM)[C] E !HI. Below we consider 

other corollaries of definitions on the basis of (6.1). Suppose N 0 ~ {C E N j 

(DOM)[C] i= 0} and VT E ~0 : N~ t::. {C E N[T] I (DOM)[C) = T}. If 

C E No and C t::. (DOM)[C], then (C I C) E Ng. Moreover, we note that 
Va E Z11

: ~0 [a] = {11. E No 11-l ~a}. Let VT E ~0 Va E zT: 

(6.2) N~[a] t::. {C E No[T; a] 1 (DOM)[C] = T}. 

Elements of (6.2) are nontrivial nonanticipating set-valued selectors of the 
("partial" set-valued) mapping a and only they. By properties of !HI we ob­
viously have the following useful property: if a E zP, 1t E ~0 [a] and 
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6 -
A = (DOJV/)[1-l], then (7-l I A) E N2[(a I A)]. Finally, as a corollary of 
(5.7), we note that VC E zn \:11-l E N0 [C] : (DOM)[7-l] c (DOA1)[f00 (C)]. 
On this basis it is possible to obtain an useful estimate of effective do­
mains of nonanticipating ~electors. If T E L:0 and a E zT, then (3.6) is 
the nonempty set, since "empty-valued" mapping on T is the element of 
(3.6). As a corollary, \:fa E zn : No [a] =f 0. Therefore, if a E zn, then 

(VOM)[a] ~ {(DOA1)[1-l]: 1-l E N0 [a]} =f 0, 0 E (DOM)[a]. 
PROPOSITION 6.1. If (Y,r) is a Hausdorff space and C E ocn U /Cn, 

then D ~ (DOJVJ)[r=(C)] = (DOM)[(na)[C}] is the greatest (in the sense of 
inclusions) element of (VOM)[C] : (DE (DOM)[C])&(VH E (DOM)[C] : 
He D). 

The proof follows from statements of section 5. We introduce a trivial 
extension of partial set-valued mappings. If T E L:0 and a E zT, then 
(0- ext)[a] E zn is def the mapping for which 

6 
(\:ft E T: (0- ext)[a](t) = a(t))&(\:fw E 0 \ T: 

(6.3) 
6 (0- ext)[a](w) = 0). 

Of course, it is possible to use (6.3) for the extension of nonanticipating 
mapping. In this connection we recall the construction of lHI; we note that 
lHI is simultaneously a Boolean algebra [25, Ch. I] and a topology of 0; in 
particular, we have \:f H E lHI : 0 \ H E lHI. These properties follow from (3.2); 
moreover, we note that \:fw E n VA E X \:fw E Do(w I A) : Do(w I A) = 

0 0 (w I A). For lHio !::. JHI\ {0}, lHio C L:o, we have (in the connection with (6.3)) 
the property: if T E lHio and 1i E N[T], then ( 0- ext) [1-£) E N. As a corollary, 
\:fa E zn \:IT E lH!o "i/1-£ E N0 [T; (a I T)} : (0- ext)[1i] E N0 [a). From this 
property we have (see section 5) "i/a E zn "i/H E lHfo "i/a E N0 [H; (a I H)] "i/h E 

H : a(h) c f 00 (a)(h). As a corollary, "i/a E z.n "i/H E lHio "i/a E No[H; (a I 
H)] : (DOJV!)[a] c (DOM)[f=(a)). 

Until the end of the present section we suppose that the following natural 
condition is correct. 

CoNDITION 6.1. The family X of section 3 is a basis of a filter of the 
set X, i.e. "if A E X "if B E X 3C E X : C c A. n B. 

PROPOSITION 6.2. If wE n, then the union of all sets Do(w I E), E E 

X, is an element of lH!o. 
The proof is the obvious corollary of the definition of lHI and Condition 

6.1. Therefore, we omit the corresponding reasoning. 
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Note that Proposition 6.2 generate a new approach to the investigation 
of nonanticipating set-valued mappings. Namely, introduce the following 
partition 

(6.4) g b. { u Oo(w I E) : wEn} 
EEX 

of n in the disjoint union of nonempty subsets; namely, 

(6.5) 
(Q C lHlo)&(O = U G)&(VG1 E g VG2 E g : 

GEQ 

(G1 n G2 =/= 0) =} (G1 = G2)). 

Of course, in terms of (6.4),(6.5) it is possible to introduce an equivalence 
relation. Namely, let def Vw1 E 0 Vw2 E 0: 

It is obvious that under W1 E 0 and W2 E 0 the equivalence 

takes place. In terms of (6.6) and (6.7) it is possible to consider g as the 
natural factor space. If (aa)aeg E I1 z0 , then 

GEQ 

(6.8) 

is the mapping, for which V P E g Vw E P: 

(6.9) 
b. 

(Daeg aa)(w) = ap(w). 

By (6.8),(6.9) the natural operation of the glueing of local mappings is de­
fined. If (aa)aeg is an element of the product of all sets N[G], G E Q, then 
(6.8) is an element of N. Moreover, if C E zn and (aa)aeg is an element of 
the product of all sets N0[G; (C I G)) (of all sets .Ng[(C I G)]), G E Q, then 
(6.8) is an element of No [C) (of~ [C]). If T E 1:0 and a E zT, then we suppose 
that N~0 [T; a] is the set of all?-£ E No[T; a] such that (DOM)['H] =I= 0. It is 
clear that under C E zn and (Ua)aeg E I1 No[G; (C I G)]: 

GEQ 

(6.10) (Daeg Ua E ~0 [C]) {::=? (3P E g : Up E N~0 [P; (C I P)]). 

We note that under C E zn the product of all the sets N0 [G; (C I G)], G E Q, 
is a non empty set (we use axiom of choice). 
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PROPOSITION 6.3. Let C E zn. Then the mapp'ing r.p defined as 

(6.11) (Uc)GEIJ ~------+ DcEt;; Uc: IT No[G; (C I G)]--+ No[C] 
GEIJ 

267 

is bijective; moreover, ~ [C] is the image of the set II &g [ ( C I G)] under 
GEt;; 

the mapping r.p. 
The proof is very simple corollary of the definitions (6.8),(6.9) and (6.11). 
COROLLARY 2. If C E ~n, then: 1}~ [C] =1- 0 is equivalent to the re­

quirement VG E g : &g[(C I G)] =/= 0; 2}~0 [C] =/= 0 is equivalent to the 
requirement :JG E g : N~0 [G; (C I G)] =/= 0. 

The proof is obvious by virtue of properties of the mapping ( 6.11); in par­
ticular, see (6.10). Moreover, here the simplest construction of an extension 
on the basis of (6.3) should be used. 

PROPOSITION 6.4. If G E g and a E zG, then N&[a] = N~0 [G; a]. 
The proof is an obvious combination of definitions of section 3 (in par­

ticular, see (3.5),(3.6)) and the basic property of a filter basts; in this con­
nection see (for example) [22, 23]. In terms of Proposition 6.4 it is possible 
to reformulate Corollary of Proposition 6.3 and previous relations. For ex­
ample, if C E zn, then the following conditions are equivalent: 1)~[C] =/= 0 
(the statement about the existence of nonanticipating set-valued nonempty­
valued selectors of C); 2)~0 [G; (C I G)] =/= 0 under all G E g. Of course, 
in Proposition 6.4 we consider the case a = (C I G), where G E g. Now, 
we omit many other useful corollaries of Proposition 6.4. The last statement 
denotes under a E zT (where T E g) that for (3 E N0 [T; a] (3.6) two fol­
lowing properties are equivalent: 1)(DOJVJ)[(J] = T; 2)(DOM)[(J] =/= 0. This 
equivalence follows (in fact) from (6.6),(6.7). 

7. The parallel procedure of MPI. On the basis of localizations of 
the previous section it is possible to construct a new representation of the 
basic variant of MPI (see section 5). First we note several absolutely simple 
circumstances refusing now Condition 6.1. So, unless otherwise stated, X 
corresponds only to general suppositions of section 3. We recall (3.11) and 
(3.12); moreover, VC E zn VH E lHfo: 

(7.1) (f(C) I H)= !'H((C I H)). 

The proof of (7.1) follows immediately from the definitions of the families 
lHI and lHfo (see section 6). This property is supplemented by the obvious 
corollaries of (3.11). Namely, if C E zn, HE 2:0 , hE Hand k E .N0, then 
fk(C)(h) C I'~((C I H))(h). Moreover, under C E z0 , HE E0 and hE H we 
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have f 00 (C)(h) c I'I'I((C I H))(h). Two last statements are realized with the 
employment of mathematical induction and the property of monotonocity of 
the mapping (3.4). On the other hand, from (7.1) the important property 
follows; namely, VC E zn VH E IHfo Vk E No: 

(7.2) (fk(C) I H) = I'~((C I H)). 

As a corollary, from (7.2) we obtain the limit representation. Namely, VC E 

Z0 VH E IHfo: 

(7.3) (f00 (C) l H)= I'~((C I H)). 

For the cases characterized by the conditions of Theorem 5.1 we obtain (in 
(7.3)) a fragment of the greatest nonanticipating set-valued selector of the 
given set-valued mapping. These properties (7.2),(7.3) are correct in the 
general case of the family X of section 3. But, new useful statements are 
realized under Condition 6.1. 

So, we postulate, until the end of the given section, that Condition 6.1 is 
satisfied: X is a filter basis of X. Then it is possible to use the construction of 
the coalescence on the basis of (6.8),(6.9). We take into account the following 
circumstance. Namely, for C E z0 and k E No in the form of (I'~( ( C I G)) )aeg 
we have an element of the product of all sets z0 , G E g. Moreover, under 
C E zn it is true that (/'G'((C I G)))aeg is an element of the above-mentioned 
product. 

PROPOSITION 7.1. Let c E z0 and k E No. Then rk(C) is the sewing 
of all the fragments I'M(C l G)), G E g, in the sense of {6.8}: 

rk(C) = Daeg I'~((C I G)). 

The proof is obtained by the obvious combination of (6.5),(6.9) and (7.2). 
THEOREM 7.1. lfC E Z 0 , then f 00 (C) is the sewing of all the fragments 

I'G'((C I G)), G E g, in the sense of (6.8}: 

f 00 (C) = Daeg l'a((C I G)). 

For the proof it is sufficient to use the combination (6.5),(6.9) and (7.3). 
In spite of the fact that two last statements are established by very simple 
methods, it is useful to note their importance. Namely, in the form of the 
procedure of MPI on the basis of r (see section 3) we have, in fact, a distinc­
tive analog of some "percept ron" realized by the system of parallel processes 



NONANTICIPATING SELECTORS 269 

characterized by operations of the mappings (analogous to (3.4)) on squares 
G E g. Namely, we realize independent iterated procedures on the basis 
of operators (3.4),(3.5) under T = G E g. Formally these procedures are 
defined by powers of /c, G E g. Really, under the given initial mapping 
C E zn we obtain the system of sequences of iterations in zG, G E g. In 
addition, the restrictions (C I G), G E 9, of the (initial) set-valued mapping 
C are used in the capacity of starting points. So, we have the system of 
parallel iterated processes for which the limit elements / 00 ((C I G)), G E 9, 
are coalesced in f 00 (C) (see Theorem 7.1). Of course, here we have a parallel 
logic procedure, the realization of which (in the form of concrete iterated 
sequences) are connected with many difficultes. 

8. Addition. In this section we consider some questions objectively 
connected with a construction similar (in fact) to Proposition 6.4. But, first 
for the general case of the family X of section 3, we note the following obvious 
property; namely, N (3.8) is the set of all mappings C E zn for each of which 
Vw1 En Vw2 En VA EX: 

((w1 I A)= (w2l A))===>({(! I A): f E C(wi)} ={(!I A): f E C(w2)}). 

By this relation the natural connection of concrete definitions similar to (1.2) 
and general definitions of section 3 (see (3.7)) is established. It is known that 
in the procedures of MPI used for solving DG, the following situation arises 
sufficiently often. Namely, in some DG under the determination of the value 
of DG by MPI, the above-mentioned value as a position function is defined 
after a finite number of iterations. And, what is more, this characteristic 
number may be highly small (in this connection also it is advisable to re­
call the known notion of regular DG [11)-[14]). This known circumstance 
[1 ]-[6), [8) generates the natural question about conditions for which the cor­
responding iterated process is stabilized after a finite number of "steps". Of 
course, this question is remained valid for the considered "direct" version of 
MPI. Namely, if a E zn, then we are interested in the following possibility: 
(na)[a] = fk(a), when k E N. Of course, the given question was justified 
in the case (na)[a] = f 00 (a). The last case takes place (in particular) under 
conditions used in Theorem 5.1. We consider the given very difficult question 
only in a specific case corresponding to the situation f 00 (a)(w) = 0. But first 
we consider some auxiliary statements connected (in idea) with constructions 
of section 6. Unless otherwise stated, then we suppose that Condition 6.1 is 
correct. 
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PROPOSITION 8.1. If G E Q and C E zG, then the following implication 
is true: 

((DONJ)[/'G(C)] =/= 0) ==} ((DOLtf)[C] =G). 

Proof. Fix G E g and C E zG for which (DO.Nf)['YG(C)] =I= 0. Choose 
wE (DOLtf)['YG(C)]. Then wE G and 'YG(C)(w) =/= 0. Choose f E 'YG(C)(w). 
Recall (3.7). As a corollary, f E C(w) has the property 

1 (8.1) V'A Ex V'w E (Ge)[G; w 1 A] 3j E C(w): (! 1 A)= (J 1 A). 

Let p E G. Consider the set C (p). For this we choose (see ( 6.4)) TJ E n 
such that G is the union of all sets Do(TJ I E), E E X. Choose E1 E X and 
E2 E X for which w E Do(TJ I E1) and p E Do(TJ I E2). We use Condition 
6.1. Namely, choose E E X for which E c El n E2. Then (see (3.2)) (w I 
E) = (TJ I E) = (pI E). As a corollary, by (3.1) we have p E (Ge)[G; w I E] 
under E E X. By (8.1) we obtain that 3j E C(p) : (! I E) = (j I E). Then 
C(p) =I= 0. We have p E (DOM)[C]. So, G c (DOAf)[C]. As a corollary, 
(DOM)[C] =G. 

Note that in Proposition 8.1 it is possible to consider the case C = 
(a I G), where a E z0 . In this connection we recall (6.5) and (7.1). So, 
V'o: E Z0 V'G E Q: 

(8.2) ((DOM)[(f(o:) I G)] =I= 0) ==} ((DOM)[(o: I G)]= G). 

Below, we use (8.2) for an analysis of the basic iterated process. We use the 
definition of the sequence (fkhe.A!o· Then from (8.2) we have V'C E zn V'G E 
g V'k E No: 

(8.3) ((DOM)[(rk+1 (C) 1 G)] =1= 0) ==} ((DOAf)[(rk(C) 1 G)]= G). 

From (8.3) we obtain the following corollary using the definition of roo. 
Namely, by (8.3) we have V'C E z 0 V'G E Q: · 

((DOM)[(f00 (C) I G)] =I= 0) ==} 

(8.4) (V'k E N0 : (DOM)[(fk(C) I G)]= G). 

It is advisable to connect the properties of kind (8.4) with Theorem 5.2. As 
a result, we have the statement: 
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PROPOSITION 8.2. If (Y, T) is a Hausdorff space and C E IK11 U KP, then 
VG E g.-

(G \ (DOM)[r=(C)] =/= 0) ===;. 

(8.5) (::lk EN: (DOM)[(fk(C) I G)]= 0). 

Proof. Let (Y, T) be a Hausdorff space and C E ocn U KP. Fix G E 

g such that the premise of the implication of (8.5) is true. Choose .A E 
G \ (DOM)[f=(C)]. Then r=(C)(.A) = 0. Using the obvious corollary of 
Theorem 5.2, we choose n E N such that rn(C)(.A) = 0. Therefore, we 
have (DOM)[(fn(C) I G)] =!= G. By (8.3) we obviously obtain the property 
(DOM)[(rn+1 (C) I G)]= 0. 

THEOREM 8.1. If (Y,T) is a Hausdorff space and C E IK11 U 1(11 , then 
VG E g.-

((DOM)[(r=(c) 1 G)]= 0) {:::::;. (::Jk EN: (DOM)[(rk(c) 1 G)]= 0). 

The proof is obvious and we omit the corresponding reasoning. Consider 
only the profound interpretation of the last statement. For the simplicity we 
consider an "one-block" particular case, i.e. we discuss the case n = G. A 
naturality of such supposition follows from statements of section 7. So, let 
n E g. Then by identifying n and G, we have (r=(c) I G) = r=(c) and 
'Ilk E No : (fk(C) I G) = fk(C). Theorem 8.1 realizes (in particular) the 
following fact: if r=(C)(w) = 0 (i.e. (DOM)[f=(C)] = 0), then for some 
kEN: fk(C) = r=(C) = (na)[C] (of course, here we postulate that (Y, T) is 
a Hausdorff space and the following property takes place: C E IK11 or C E lCn). 

Example 8.1. Consider one concrete variant of the general statement 
similar (in idea) to Example 3.1. Namely, consider the simplest "scalar" 
conflict-control system [11]-[14} on the time interval [0, 1]: 

(8.6) x= u + v, x(O) = o. 

Suppose that u E [-1, 1] and v E [-1, 1] are the given geometric constraints 
on the choice of "instantaneous" controls. Introduce the set W of all Borel 
functions operating from [0, 1] into [-1, 1]. Moreover, introduce the sets U 
and V of admissible programmed controls of the players I and II respectively. 

Namely, let U 
6 

W. Suppose, that Vis arbitrary nonempty subset of W, 
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satisfying the following conditions: 1)'v'V E V 3t E}O, 1] 'v'f, E [0, t[: V(O = 

0; 2) the control V0+ E W, defined as V0+(t) ~ 0 under t E [0, 1/2[ and 

V0+(t) ~ 1 under t E [1/2, 1], is an element of V; 3) the control V0- E ~V, 
for which V0-(t) ~ 0 under t E [0, 1/2[ and V0-(t) ~ -1 under t E [1/2, 1], 
is an element of V; 4) the control 0 E l¥, for which O(t) = 0 under all 
t E [0, 1], is an element of V. Postulate that the plyer I strives to the goal 
I x(1) 12: 1 and exploits (for this) controls U E U. The player II has the 
inverse goal. Introduce the set C([O, 1]) of all continuous functions from [0, 1} 

into JR. In this example we suppose that: X ~ [0, 1], Y ~ [ -1, 1], X ~ 
{[0, t[: t E]O, 1]}, y ~ IR, T is the ordinary I . !-topology of IR, n ~ v, z ~ 
C ( [0, 1]). In this conditions 8 is the natural topology of pointwise convergence . 
in C([O, 1]) (see [22]). In addition, in the considered example (Y, T) and (Z, 8) 
are Hausdorff spaces. Consider the mapping (pseudo-strategy) C acting from 
n = V into the family z of all subsets of Z. First, we introduce (under 
V = v(·) En) the nonempty set Xu(V) of all functions cp[U; V] E Z defined 
each as 

(8.7) t ~ j U(O-Xo(dE,) + j V(O-Xo(df,) : [0, 1] ~ lR 

(O,t( (O,t( 

(here -\0 is the restriction of the Lebesque measure to a-algebra of Borel 
subsets of [0, 1]) under the enumeration of all U E U. Then (in the corre­
spondence with the above-mentioned goal of the player I) under V E n we 
define C(V) as the set of all z E Xu(V) such that I z(1) 12: 1. In the form 
of C(V) we have (under V E n) the sequentially compact nonempty subset 
of Z equipped with the topology of uniform convergence on [0, 1] (note that 
C(V) is a compactum in the given topology). As a corollary, if V E n, then 
C(V) is a sequentially compact set in (Z, 8), i.e. C(V) E K. We have C E K-0 . 

Moreover, from (6.6) and (6.7) we obtain the property g = {0}. So, here an 
"one-block" problem is considered. In this problem the conditions defining 
the basic statement of Theorem 8.1 are correct. Note that by Theorem 5.1 
in the given example f<"'(C) = (na)[C]. But, (na)[CJ(O) = 0. Really, let, 
in contradiction, z0 E (na)[C](O). Then (see (5.3)) z0 E C(O). Therefore, 
I z0(1) 12: 1 and it is possible to indicate U0 E U for which z0 = cp[U0; 0]. So, 
z0 (1) is integral of U0 on [0, 1]. As a corollary, we have that U0 (t) = 1 almost 
everywhere on [0, 1] or U0(t) = -1 almost everywhere on [0, 1]. In addition, 
'v't E [0, 1 ): 

(8.8) zo(t) = j Uo(E,)-Xo(df,). 
(O,t( 
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For obtaining (8.8) it should be used (8.6) and (8.7). Let U0 (t) = 1 almost 
everywhere on [0, 1] (in the sense of ..\0 ). Note that by (3.2) V0- E Oo(O I 
[0, 1/2[). Therefore, it is possible to choose z0 E (na)[CJC\10-) for which 
(zo I [0, 1/2[) = (z0 I [0, 1/2[). Then zo(1/2) = z0(1/2), since zo and z0 are 
continuous functions. In addition, z0 E C(VQ-). As a corollary, I z0(1) 12:: 1. 
On the other hand, 

(8.9) zQ"(1) = zo(1/2) + f uo-(t)>.o(dt)- ~' 
a,1[ 

where U0 E U. We use the property: V0-(t) = -1 under t E [1/2, 1). Recall 
that z0 (1/2) = 1/2 (see (8.8)). From (8.9) we obtain that 1/2 ~~ z0(1) I· 
\Ve have the obvious contradiction. Let U0(t) = -1 almost everywhere (in 
the sense of Ao) on [0, 1]. Recall (see (3.2)) that vo+ E Oo(O I (0, 1/2[). 
Choose z6 E (na)[C](V0+) such that (zo I (0, 1/2[) = (z6 I [0, 1/2[). Then by 
the continuity of z0 and zti the equality zo(1/2) = zti(l/2) takes place. Of 
course, z6 E C(V0+). Therefore, I zti(1) 12:: 1. But, in the considered case 
(see (8.8)) z0(1/2) = -1/2. Then 

(8.10) zti(1) = zo(l-/2) + j Ud"(t)>.o(dt) + ~ = j Ud"(t)>.o(dt), 
[~,1[ [~,1[ 

where Ud" E U. From (8.10) we obtain the inequality 1/2 2::1 zci(1) I· Now we 
have the contradiction. So, (na)[C](O) = 0. From Proposition 6.4 we obtain 
the property (DOM)[(na)[C]] = 0, since in given case 0 E Q. From Theorem 
5.1 we have the equality (DOM)[roo(C)] :._ 0. By Theorem 8.1, we obtain 
that 3k E Jl: (DO.LVJ)[rk(C)] = 0. As a corollary, roo(C) = (na)[C] = rk(C) 
for some k E N. 
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OF SOLUTIONS OF THE CAUCHY PROBLEM 
FOR PARABOLIC EQUATIONS ON THE NETS * 

V. DENISOV t 

Abstract. This note is devoted to study sufficient conditions for stabilization of the 
difference lim iu(x, t)- v(x, t)l = 0, x E S- nets, where u(x, t) is solution of the Cauchy 

t-OCJ 

problem for parabolic equation which is definite on S x [0, +oo ), S- nets in EN and v(x, t} 
is solution of the Cauchy problem with averaged constant matrix which is definite in all 
point x E EN, t 2': 0. 

Key Words. Heat equation, Parabolic equation, Cauchy problem, Stabilization, Nets, 
Knots, Average theory 

1. Definitions and the statement of the problems. In the Eu­
clidean space EN (N 2: 2) we consider the nets Sc, e > 0, which is a 
union at all of the lines, parallel to coordinate axes with knots of the nets 
(n1e, n2e, ... , nNe), nk E Z, (k = 1, ... , N). From this it follows that Sc is a 
union of edges of cubes Of= {ie:::; Xk:::; (i + 1)e, i E Z, k = 1, ... , N}. We 
define the linear Lebesque measure J-Lc on the lines of Sc, with normalizating 
coefficient eN-l jN. This is a periodic measure /-Lc with period e, and measure 
of cell of periodicity is equal eN, so J-L(Df) = eN. From this it follows that 
pc ___,_ dx: i.e. 

c-+0 

lim J TJ(x) dJ-Lc(x) = J TJ(x) dx, VTJ(x) E C0 (RN). 
c-+0 

EN EN 

In the half space { t 2: 0} = { x E S, t 2: 0} we consider the Cauchy 
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Russia. E-mail: V.Denisov@g23.relcom.ru 
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problem for parabolic equations of divergence form 

(1) I ~~ . div (a(x)Y'u), (x, t) E {t > 0}, 

ujt=G = r.p(x),x E S 

where we assume that the real function a(x) is defined on S for all t > 0 and 
is periodic on each variables with period 1 and satisfies the condition 

(2) 
1 
)." ~ a(x) ~A, A> 0, x E EN. 

The symbol V' desinate here the differential operator on the netS, which 
is coincident with 8f8xi on lines xi ( i = 1, ... , N) parallel to axis xi· 

Also we assume that the initial function r.p(x) is definite on the net S 
and is bounded function on S. 

The Cauchy problem (1) we understand in usual weak sense, that is in 
sense of integral identity: 

+oo +oo 

(3) j j u!~ d~-tdt+ j r.p(x)TJ(x,O)dtt= j j(aV'u,V'TJ)dttdt, 
0 s s 0 s 

for all functions TJ(X, t) E C0 ( { t > 0}) where function u(x, t) is definite on 
{t > 0} and belogning to L2{S x [O,T],dJ-t · dt} VT > 0, and V'u(x,t) E 

L 2 {S x [0, T], d~-t · dt} VT > 0. 
The solutions of the problem ( 1) we takes from class of uniqueness, that 

is solutions is bounded in each strip {0 < t ~ T} = {S x (0, T]}. 

2. Example. If a(x) = 1, N = 2, then the problem (1) we can interpret 
in the following equivalence sense 

(1') I ~~ = ~u, (x, t) E {t > 0}, 

ult=O = r.p(x), XES, 

where we assume that 
1) S is the usual square net on the plane E 2 with natural linear measure 

p[i ~ x1 ~ i + 1,j ~ x 2 ~ j + 1] on edges of square with coefficient 1/2; 
2) u(x, t) is continuous function on net S together with knots (nb n2), 

ni E Z; 
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3) on hor~zontal and vertical units function n(x, t) have first and second 
derivative, with is square integrable. 

4) derivative dujdx1 (on horizontal units), dujdx2 (on vertical units) 
they can have discontinuity on nodes of network, but a jump of derivative 
duj dx1 + jump of derivative duj dx2 = 0 in each nodes of network. 

Under this conditions we have, that 

(1') 

au 
at= ~u = 

d2u h . l . 0 
d 2 on onzonta umt, t > , 
xl 

d2u . l . 0 
d 

') on verttca umt, t > , 
X2 

ujt = <p(x), x E S, 

<p( x) is bounded initial function on net S. 

(4) 

For this definition of Laplace operator~ on net S see [1]. 
Together with problem (1) we consider usual Cauchy problem 

{ 

8u0 
0 0 N 

ot = L u ' (x, t) :X E E ' t > 0 

u0 j = <P(x), x E EN, 
t=O 

N 

where L0 = I: a?io2 /(ox/Jxi), ila?jiiNxN- so called averaged matrix with 
i,j=l 

constant coefficient [2), <P( x) - is bounded initial function on EN. 
The averaged matrix a0 = lla?jiiNxN is also simmetric and satisfies the 

elliptic conditions 

,\ > 0. 

The initial function <P(x) in (4) is fulfillment of initial function <p(x) in (1) 
on S. 

We assume that fulfilment function <P(x) x E EN, is bounded and satisfies 
conditions 

(5) j <p(x) dJ.L(x) = j <P(x) dx 

oneachcell0i={i~xk~i+1; k=1, ... ,N, iEZ}. 
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We have the following assertions 
THEOREM 1. The solutions of the Cauchy problems {1), (4) satisfies the 

following property: exist the limit of difference 

(6) lim ( u(x, t)- u0 (x, t)) = 0, 
t-+oo 

on each xES. 
From this closeness theorem we can to obtain the criterium for stabiliza­

tions of the solutions of the Cauchy problem (1). 

lim u(x, t) =A, x E S 
t-+oo 

from well known pointwize criterium of stabilization of the solutions of the 
Cauchy problem (4). 

lim u0(x, t) =A, x E S C EN 
t-+oo 

(see [3)-[6]). 
THEOREM 2. If the fulfilment function cp(x) in (4) is connected with 

initial function <p(x) in {1) by conditions {5), then the solutions u(x, t) of 
the Cauchy problem ( 1) stabilizes on S 

lim u(x, t) =A, xES 
t-+oo 

if and only if the following limit of ellipcoidal averaged value of initial function 
<p(x) exist 

hm--. 1 J 
R-= 'YNRN 

(By,y)$R2 

<p(y) d(f.L) =A, 

where B - in inverse matrix for averaged matrix a0, 'YN - is area of the 
unit ellipsoid in EN. 

3. Outline of proofs. For fixed c: > 0 we consider the compressed 
net Se with variables xjc:, and definite the Cauchy problem for parabolic 
equation (1) 

with initial function 
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Applying the real Laplace transform to solution of the problem (1c-) on vari­
able t > 0, we obtain following problem in ~V1 • 2 (EN, dJLc-) 

(7) 

where vV1•2(EN, dJL 10
) is a closure of functions w E C0 (EN) in the norm 

[ ] 

1/2 

llwllw'·'(RN,dp•) = j (lw'l' + IV'w'l') d!L' 

00 

and wc-(x, p) = J e-Ptuc-(x, t) dt, p > 0 the Laplace transform of function 
0 

uc-(x, t). Applying the well-known average theorem 6.3 from [1], we obtain, 
that the solution we- of the problem (7) satisfies the following limit relating: 
for any 1J E C0 (EN) the limits exists 

(8) lim j 1J(x)wc-(x,p) dJLc- = j 1J(x)w0(x,p) dx 
c--+0 

EN EN 

(9) lim j[wc-(x,p)F dj.Lc- = j[w0(x,p)F dx 
c--+0+ 

EN EN 

where w0 is the solution of the average problem in W1•2 (EN, dx) 

(10) 

where a0 is average constant matrix, f 0 E C0 (EN). 
After that we can to apply the well-known Trotter-Kato theorem [7], 

which imply that the following limits exist 

(11) lim j 1J(x)uc-(x, t) dJLc- = j 1J(x)v0(x, t) dx, \/1] E CQ'(EN) 
c---+0 

EN EN 

(12) 

for any fixed t > 0, where v0 is the solution of the Cauchy problem ( 4) with 
average matrix a0 and initial function f 0 E C0 (EN). 
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This is main property whish we can obtain from standard average theory. 
But in order to prove theorem 1 we must to bring some refinements in average 
theory. We have following result 

THEOREM 3. If initial function f in the Cauchy problem (1e-) satisfies 
limit condition r E D)O (EN, dJJ,e) and the following limit exist 

(13) lim J r(x)TJ(X) df.le = J f 0 (x)TJ(X) dx 
e-+0 

EN EN 

for any TJ(x) E C0 (EN), then the following limit exist 

(14) lim j ue-(x, t)TJ(x) dJ.te- = j u0(x, t)TJ(x) dx, t > 0 
e-+0 

EN EN 

for any TJ(x) E C0 (EN), where u0(x, t) is the solutions of the Cauchy problem 
with initial function u0(x, 0) = f 0 (x): i.e. 

(15) 

Proof of the theorem 3. Let us assume that limit conditions (13) holds 
for any function TJ(x) E C0 (EN). From hypothesis lr(x)l < M it follows 

e-+0 
that exists subsequence {r}, which is weakly convergence to f 0 (r ___,. f 0 

weakly in L2(EN, df.le-)). 
Now by applaying Green formula for solutions of the Cauchy problem 

(16) aue- = Lue, 
at uelt=O = r(x) 

and 

(17\ 
ave 

vel - = r.o?,e = nf-r. )_ , .... , at - ~' lt=O 
., ,-,, 

where TJ(x) E C0 (EN), we have, that following equality 

(18) j ue(x, to)TJ(x) df.le = j ve-(x, to)r(x) df.le, t 0 > 0 

EN EN 

holds. Passing c--+ 0 in the left of (18) we have 

(19) lim j ue(x, to)TJ(X) df.le = j u*(x, to)TJ(x) dx, 
e->0 

EN EN 
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where u*(x, t0 ) -some limit point (in weak seance) of sequence uc:(x, t0 ). 

Applying the Trotter-Kato theorem [7] in right of (18) we have that following 
limit exist 

(20) 

where v0 (x, t) is the solution of the average Cauchy problem (17) with c = 0. 
From (19), (20) it follows that for any TJ(x) E C0 (EN) 

(21) j u*(x, to)TJ(x) dx = j v0 (x, to)f0(x) dx. 
EN EN 

Applying Green formula in the right side of (21), we have 

(22) j u*(x, to)TJ(x) dx = j u0 (x, to)TJ(x) dx, 
EN EN 

for any TJ(x) E C0 (EN), t0 > 0. From last equality it is easy to see that 

u*(x, to) = u0(x, to), to > 0, a.e. x E EN 

where u0 (x, t 0 ) is the solutions of the Cauchy problem (15). 
Theorem 3 is proved. 
The following statement play very important role in the proof of theo­

rem 1. 
LEMMA 1. If initial fulfillment function <P(x) in the Cauchy problem (4) 

and initial function <p(x) in the Cauchy problem (1} satisfies property (5), 
then limit exist 

(23) lim J TJ(x)<pc:(x) dJ-Lc: = J TJ(x)<p0 (x) dx 
£---+0 

EN EN 

if and only if the following limit exist 

(24) lim j TJ(x)<Pc:(x) dx = j TJ(x)<p0 (x) dx 
c:-->0 

EN EN 

for any TJ(x) E C0 (RN). 
For proof lemma 1 we introduce notation n = suppTJ(x) -support of 

functions TJ(x) E C0 (EN). N(c:) = IOI/c:N, where 101- measure n. 
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Considering EN as union of N-dimensional cubes 0~, we have 

~ = j 77(X)<tl(x) dJ.l(x)- j 77(x)cp(x) dx = 

EN EN 

= t [ j q(x)<P'(x) dl''(x)- j q(x)ip(x) dx ]· 
k=l Ok Ok 

e • 

Let Xk -is center of cubes Ok, then we have identity 

- j [77(x)- 77(xk)]cpe:(x) dJ.Le:(x) -7](xk) j ;pe:(x) dx }· 

0~ 0~ 

From condition (5) it follows that 

By applying triangle inequality we have 

Taking into account that function 77( x) is uniformly continuous on sup­
port n, i.e. 
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and following evident inequalities 

we have: 

N 

""""" € N l.:ll :S ~ MIOI·£ . M. 

From definition N(c) = IOI/cN it follows the proof of Lemma 1. 
For proof theorem 1 we consider two Cauchy problem 

(25) 

(26) V
10

1 = cjl(x), 
t=O 

where cp10 (x) is some fulfilment of initial function cp(x), and conditions (5) 
are holds. Now we put £ = _fi, t > 0. From condition (5) and lemma 1 it 
follows that the sequances { cp10 (x)} and { cp10 (x)} have the same weak limit: 

e--+0 
cp10 

---. cp0 weakly in L 2(EN, dJJ,e), 
e--+0 

cp10 
---. cp0 weakly in L 2(EN, dJ.l,e}. 

It is known [8] that solution { u10 (x, t)} of the Cauchy problem satisfies 
uniform Holder conditions, with constant which does not depend on£. From 
this condition and theorem 3 it follows that following limit 

(27) 
1 

lim u?t (0, 1) = u0(0, 1) 
t--+oo 

exist. Now we must to apply Poisson formula for solution of the Cauchy 
problem (26) with constant coefficient, i. e. 

v10 (0, 1) = j K0 (x,O, l)cj5(c-1x) dx 

EN 
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where K 0 (x, y, t) is fundamental solutions of (28). Passing c ----> 0 we have 

(28) lim v?t(o, 1) = u0(0, 1). 
t-+00 

From (27), (28) it follows that theorem 1 is proved. 
Proof of the theorem 2 is omitted, and it follows straightforward from 

theorem 1 and well known criterium of stabilization of the solution of the 
Cauchy problem for heat equation [3]. 

After this proof the theorem 2 may be made very easy as in the book [2]. 
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Abstract. Some asymptotic properties are studied for the solutions of a class of 
impulsive differential equations of second order with retarded argument and fixed moments 
of impulse effect. Sufficient conditions are found for oscillation of all solutions. 

AMS(MOS) subject classification. 34A37 
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1. Introduction. The impulsive differential equations are an object of 
intensive investigations in regard to the possibilities for their applications in 
science and technology. Let us mention the monographs Bainov-Simeonov 
[1], Bainov-Simeonov [2] and Lakshmikantham-Bainov-Simeonov [6] where 
various properties of the solutions of this type of differential equations were 
investigated. 

However, the oscillation theory of the impulsive functional-differential 
equations is not yet elaborated in contrast to the oscillation theory of the 
ordinary differential equations with deviating argument (see the monographs 
Erbe-Kong-Zhang [3}, Gyori-Ladas [4], Ladde-Lakshmikantham-Zhang [5] 
and the bibliography therein). 

In the present work we study some asymptotic properties of the solutions 
of a class of impulsive differential equations of second order with retarded 
argument and fixed moments of impulse effect. Sufficient conditions are 
found for oscillation of all solutions of the equation under consideration. 

* Technical University, Sliven - 8800, Bulgaria 
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2. Preliminary notes. Consider the impulsive differential equation of 
second order with a deviating argument 

n 

(1) (r(t)y'(t))'- LPi(t)y(gi(t)) = 0, 
i=l 

n 

~(r(7k)Y1 (7k))- LPkiY(9i(7k)) = 0, kEN, 
i=l 

with initial condition 

(2) y(t) = cp(t), t E Et0Y'(to + 0) = y~, y(to + 0) =Yo, 

where 

Et0 ={to} U {gi(t); 9i(t) <to, t ~to, i E Nn = {1, 2, ... , n} }, 

and cp E C(Et0 , R), to is fixed number,to E R+ = (0, +oo ). 
Here ~(r( 7k)y'( 7k)) = r( 7k + O)y'( 7k + 0)- r(7k- O)y'( 7k- 0); y( 7k + 0) = 

y(7k - 0) = y(7k); y1(7k - 0) = y'(7k); r(7k- 0) = r(7k); 71, 72, ... are the 
moments of impulse effect. 

We denote by PC(R+, R) the set of all functions u: R+-> R, which are 
continuous for t E R+, t =/:- 7k, k E N, continuous from the left for t E R+ 
and have discontinuity of the first kind at the points 7k E R+, k E N. 

Introduce the following conditions: 
Hl. 0 < to < 71 < 72 < ... , limk-+oo 7k = +oo. 
H2. 9i E C(R+, R), gHt) ~ 0, 9i(t) ~ t, limt-+oo 9i(t) = +oo fori E Nn. 
H3. r E PC(R+, R+), r(7k + 0) > 0 for 7k E R+, kEN. 
H4.The function PiE PC(R+, R+), Pki ~ 0, kEN, i E Nn. 
H5.limt-+oo R(t) = +oo, where 

t ds 
R(t) = J r(s)" 

0 

DEFINITION 1. The function y(t) is said to be a solution of equation 
{1) in R+ if· 

1. y(t) is continuous on R+ 
2. y(t) is twice differentiable fortE~' t =/:- 7k and satisfies (1) in R+· 
DEFINITION 2. The nonzero solution y(t) of the problem (1), (2) is said 

to be nonoscillating if there exists a point t0 ~ 0 such that y(t) has a constant 
sign fort~ t0 • Otherwise the solution y(t) is said to oscillate. 
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DEFINITION 3. The solution y(t) of the equation (1} is said to be regular, 
if it is defined on some interval [Ty, +oo) C [t0 , +oo) and 

sup {ly(t)l: t ::::: T} > 0 for each T 2: Ty. 

DEFINITION 4. The regular solution y(t) of the equation (1} is said to 
be eventually positive (eventually negative), if there exists T > 0 such that 
y(t) > 0 (y(t) < 0) fort ::::: T. 

Let S denote the set of all solutions of equation ( 1) . We introduce the 
following sets: 

s+oo = {y E S: limt--+oo y(t) = +oo, limt--+oo r(t)y'(t) = +oo }, 
s-oo = {y E S: limt--+oo y(t) = -oo, limt--+oo r(t)y'(t) = -oo }, 
S"' = {y E S: y(t) is oscillatory solution}. 

3. Main results. THEOREM 1. 
Let conditions H1 - H5 be met. 
Then: 
1. rp(t) 2: 0 on Et0 , Yo ::::: 0, y~ 2: 0 imply that the solution y(t; rp, y0 , y~) 

of equation (1) is a nonnegative and nondecreasing function on [to, +oo). 
2. rp(t) :::; 0 on Et0 , Yo :::; 0, y~ :::; 0 imply that the solution y(t; cp, Yo, y~) 

of equation (1) is a nonpositive and nonincreasing function on [t0 , +oo). 
Proof Integrating (1) from t0 tot (t ::::: t 0), we obtain 

t n n 

(3) r(t)y'(t) = r(to)y'(to) + J ~Pi(s)y(gi(s))ds + L ~PkiY(Yi(Tk)). 
to t=l to:Srk<tt=l 

We divide (3) to r(t) > 0, integrate the equality from t0 tot and obtain 

(4) y(t) = y(to) + j r~~;~ds+ 
to 

or 

(5) y(t) = y(to) + r(to)Y~[R(t) - R(to)]+ 



288 M. DIMITROVA 

t n n 

+ j[R(t)- R(s)] ~Pi(s)y(gi(s))ds + L ~[R(t)- R(Tk)]PkiY(9i(Tk)). 
to 2=l to::; Tk <t l=l 

Then (3) and (5) imply the assertion of Theorem 1. 
THEOREM 2. Let conditions H1- H5 be met. 
Then: 
1. cp(t) ~ 0 on Et0 , y0 > 0, y~ > 0 imply that the solution ofthe equation 

(1) y(t;cp,yo,y~) E s+oo and y(t;cp,yo,y~) > 0 on (to,+oo). 
2. cp(t):::; 0 on Et0 , Yo< 0, y~ < 0 imply that the solution ofthe equation 

(1) y(t;cp,yo,Y~) E s-oo and y(t;cp,yo,y~) < 0 on (to,+oo). 
Proof From Theorem 1 y(t) = y(t; cp, y~) ~ 0 for t ~ t0 , and from (5), 

y(t) ~ r(to)Y~[R(t) - R(to)]. 
From the above inequality as t ~ +oo, and from condition H5 it follows 

that y E s+oo and y(t) > 0 fort ~to. 
THEOREM 3. Let conditions H1 - H5 be met.Further assume that 

y1(t) and Y2(t) have the same initial function with y~0 > y~0 . Then y1(t) > 
Y2(t),y~(t) > yHt) on t ~to and limt .... +oo(YI(t)- Y2(t)) = +oo. 

Proof Consider y(t) = y1(t) - y2(t) and note that y(t) is a solution 
of equation (1) with initial function cp = 0 and y~ = y~0 - y~0 > 0. From 
Theorem 2 y(t) E s+oo and y(t) > 0 on [t0 , +oo) and from (3) we have 
y'(t) > 0. The proof is complete. 

THEOREM 4. Let conditions H1 - H5 be met. Then for every initial 
function cp, equation (1) has no more than one bounded solution on [to, +oo ). 

Proof For the sake of contradition suppose the opposite. Let y1 (t) and 
Y2(t) be bounded solutions with y~0 > y~0 • This implies that I y1(t)- y2(t) I 
is bounded. On the other hand, by Theorem 3 I Yl - Y2 IE s+oo. Th 

e contradiction obtained shows the validity of the theorem. 
THEOREM 5. Let the following conditions hold: 
1. Conditions H1 - H5 are met. 
2. 

00 oo oon 
j R(s) LPi(s)ds + :L :L R(Tk)Pki = +oo. 
0 i=l k=l i=l 

Then all bounded solutions of equation (1) either tend to zero as t ~ +oo 
or oscillate. 

Proof Let y(t) be a positive and bounded solution of equation (1) for 
t ~ t1 ~ 0. It is clear that y(gi(t)) > 0 for t ~ t1i ~ t17 i E Nn. Then 
(r(t)y'(t))' > 0 and 6.(r(Tk)Y'(Tk)) > 0 fort, Tk ~ t2 = t1 +t, f = max{t1i, i E 
Nn}· 
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Therefore r(t)y'(t) is an increasing function fort ~ t2. 
The following two cases are possible: 
Case 1. There exists t3 ~ t2 such that r(t3 )y'(t3 ) > 0; 
Case 2. r(t)y'(t) ~ 0, fort ~ t2. 
We shall consider first case 1. 
Since r(t)y'(t) is an increasing function fort ~ t3 , it follows that 

We integrate the last inequality from t3 tot (t ~ t3 ) and conclude 

t 

y(t) ~ y(t3 ) + r(t3 )y'(t3 ) j r~:). 
t3 

Now the above inequality as t -+ +oo, and condition H5 imply that 
limt--+oo y(t) = +oo which contradicts the assumption that y is a bounded 
solution of the equation (1). 

Next we shall consider case 2. Since r(t)y'(t) is an increasing function for 
t ~ t2, it follows that there exists the finite limit limt--+oo r(t)y'(t) = c < 0. 

Let us suppose that limt--+oo r(t)y'(t) = c < 0. Then r(t)y'(t) < c for 
t ~ t 2 . Hence 

After passing to limit as t-+ +oo in the abobe inequality it follows that 
limt-+oo y(t) = -oo, which contradicts the assumption that y is a positive 
solution. Thus, 

(6) lim r(t)y'(t) = 0. 
t-+oo 

We shall prove that limt-+oo y(t) = 0. 
Since y(t) > 0, y'(t) ~ 0, for t ~ t2, then there exists the finite limit 

limt-+oo y( t) ~ 0. 
Suppose that limt-+oo y(t) =A> 0. 
Now, we integrate ( 1) from t 2 to t and obtain the equality 

. n t n 

(7) r(t)y'(t) = r(t2)y'(t2) + L LPkiY(9i(Tk)) + j LPi(s)y(gi(s))ds. 
t2:::;Tk<t i=l t 2 i=l 
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Passing to the limit in (7) as t-+ +oo and having in mind (6), we deduce 

n 00 n 

r(t2)y'(t2) =- L LPkiY(9i(Tk))- J LPi(s)y(gi(s))ds. 
t2:::;r,. i=l t2 i=l 

Since t2 could be made arbitrarily large we obtain 

n 00 n 

(8) r(u)y'(u) =- L ?=PkiY(9i(Tk))- J ?=Pi(s)y(gi(s))ds. 
u:::;r,. t=l u t=l 

We divide (8) to r(t) > 0, integrate the equality obtained from [to t, 
( t ~ t2 ) and obtain 

(9) 

t 1 oo n 

-~ r(u) [ ~Pi(s)y(gi(s))dsdu 

Set 

and 

t 1 oo n 

B(t) =- j r(u) j ~Pi(s)y(gi(s))dsdu. 
f u t=l 

We shall estimate A(t) and B(t) separately. 
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n n 

= -[R(t)- R(t)] L LPkiY(9i(Tk)) + R(t) L LPkiY(9i(Tk))-

n n 

:::; -[R(t)- R(t)] L LPkiY(9i(Tk)) + R(t) L LPkiY(9i(Tk))-

n n 

- L L R(rk)PkiY(9i(Tk)) = L L(R(t)- R(rk))PkiY(9i(Tk)) 

or 
n 

(10) A(t) :::; L L(R(t)- R(rk))PkiY(9i(rk)) 
f:S.rk<t i=l 

For B(t) we have 

t oo n 

B(t) =-J r(~) J !;,Pi(s)y(gi(s))dsdu = 
t u ~-1 
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00 n un t 

= -(R(t)- R(t)) f'[;;p;(s)y(g;(s))ds + R(u) f ~p;(s)y(g;(s))ds[,-

oo n t n 

= -(R(t)- R(t)) j ~Pi(s)y(gi(s))ds + R(t) j ~Pi(s)y(gi(s))ds-
f t=l [ t=l 

t n 

- j R(u) LPi(u)y(gi(u))du ~ 
[ t=l 

t n t n 

~ -(R(t)- R(f)) j ~Pi(s)y(gi(s))ds + R(t) j LPi(s)y(gi(s))ds-
f t=l [ t=l 

t n t n 

- j R(s) ~Pi(s)y(gi(s))ds = j(R(t)- R(s)) ~Pi(s)y(gi(s))ds, 
:;: t=l ~ z=l 
• t 

i.e. 

t n 

(11) B(t) ~ j(R(t)- R(s)) LPi(s)y(gi(s))ds 
[ i=l 

Now (9),(10) and (11) imply 

n 

y(t) ~ y(f) + L 'L.(R(f)- R(rk))Pkiy(gi(Tk))+ 
f~Tk<t i=l 
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t n +I (R(f)- R(s)) 'I:,Pi(s)y(gi(s))ds = 
f i=l 

n t n 

= y(f) + R(f) [_'I:, 'I:,PkiY(9i(Tk)) +I 'I:,pi(s)y(gi(s))ds]-
t~Tk<tt=l f t=l 

n t n 

-[_'I:, ?= R(Tk)PkiY(9i(Tk)) +I R(s) LPi(s)y(gi(s))ds]. 
t~Tk<t t=l f t=l 

From (7) it follows 

y(t) ::; y(f) + R(f)[r(t)y'(t)- r(i)y'(i)]-

n t n 

- [_'I:, ?= R(Tk)PkiY(gi(Tk)) + j R(s) ?=Pi(s)y(gi(s))ds]. 
t~Tk<t t=l f t=l 

Since limt ..... +oo y(t) =A it follows that 

y(t) ::; y(f) + R(i)[r(t)y'(t)- r(f)y'(t)]-

The last inequality,(6) and the condition 2 of the theorem imply 
limt-++oo y(t) = -oo which contradicts the assumption that y is a positive 
bounded solution of the equation (1). 

Therefore limt-+oo y(t) = 0. 
THEOREM 6. Let the following conditions hold: 
1. Conditions Hl - H5 are met. 
2. r'(t) 2 0, t E R+· 
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3. 

where g(t) = max{gi(t), i E Nn}· 
Then all bounded solutions of equation ( 1) are oscillatory. 
Proof Let y(t) be a bounded and nonoscillatory solution of equation 

(1). Without loss of generality we assume y(t) > 0 fort 2: t1(t1 2: t0 ). Then 
y(gi(t)) > 0 fort 2: t 1i 2: t 1 , i E Nn. Analogously to the proof of Theorem 5 
we obtain the inequality r(t)y'(t) :S 0, t 2: t2 = t1 + f, f = max{t1i, i E Nn}· 

Integrating ( 1) from s to t ( t > s 2: t2), we have 

t n n 

(12)r(t)y'(t) = r(s)y'(s) +I LPi(a-)y(gi(O"))dO" + L ~PkiY(gi(Tk)). 
5 t=l s:::;rk<t t=l 

or 

Now we integrate (12) from g(t) tot, and obtain 

t t t n 

r(t)y'(t)[t- g(t)] = I r(s)y'(s)ds + I [I ~Pi(O")y(gi(O"))dO"+ 
g(t) g(t) s t=l 

n 

+ L LPkiY(9i(Tk))]ds 
s:::;rk<t i=l 

t 

0 2: r(t)y(t)- r(g(t))y(g(t))- I y(s)dr(s)+ 
g(t) 

n t n 

+ L (Tk- g(t)) ~PkiY(9i(Tk)) + I (0"- g(t)) LPi(O")y(g~_(O"))dO" 2: 
g(t):::;rk<t t=l g(t) t=l 

2: r(t)y(t)- r(g(t))y(g(t))- y(g(t))[r(t)- r(g(t))]+ 

t n 

+y(g(t)) I [0"- g(t)] LPi(O")dO" + y(g(t)) L (Tk- g(t)) tPki = 
g(t) i=l g(t):::; Tk <t i=l 
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t n 

= r(t)y(t)- r(t)y(g(t)) + y(g(t))[ I [cr- g(t)] ?=Pi(cr)dcr+ 
g(t) z=l 

n 

+ L (Tk- g(t)) LPki]· 
g(t)~rk<t i=l 

Dividing the last inequality to r(t)y(g(t)), we obtain 

y(t) 1 n n 

[ 
t l ( (t)) + r(t) [I (cr- g(t)) LPi(cr)dcr + L (rk- g(t)) ?=Pki]- 1 s; 0. 

Y g g(t) t=l g(t)~rk<t z=l 

The last inequality contradicts condition 3 of Theorem 6. 
COROLLARY 1. Let the conditions of Theorem 6 be satisfied. 
Then: 1. The inequality 

n 

(13) (r(t)y'(t))'- LPi(t)y(gi(t)) ~ 0, t =f. Tk, kEN, 
i=l 

n 

~(r(rk)y'(rk))- LPkiY(gi(rk)) ~ 0, ~y(rk) = 0, kEN 
i=l 

has no bounded, eventually positive solution. 
2. The inequality 

n 

(14) (r(t)y'(t))'- LPi(t)y(gi(t)) s; 0, t =f. Tk, kEN, 
i=l 

n 

~(r(rk)y'(rk))- LPkiY(gi(Tk)) s; 0, ~y(rk) = 0, kEN 
i=l 

has no bounded, eventually negative solution. 
COROLLARY 2. Let the following conditions be satisfied: 
1. Conditions H1- H5 are met. 
2. 
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for some i E Nn, g(t) = max{gi(t), i E Nn}· 
Then: 
1. The inequality {13) has no bounded, eventually positive solution. 
2. The inequality {14} has no bounded,eventually negative solution. 
3. All bounded solutions of the equation {1} are oscillatory. 
Introduce the following conditions: 
H6. 9i E C(R+, R); 9i(t) :::; t for t E R+; limt-.+oo 9i(t) = +oo for 

i E Nn. 
H1. There exists a set K = {kr, k2 , ••• , kz} C Nn such that 1 :::; k1 < 

k2 < ... < kz:::; nand g~(t) 2: 0, k E K, t E R+. 
THEOREM 7. Let the following conditions hold: 
1. Conditions H1, H4- H7 are met. 
2. r(t) = 1, t E R+. 
3. 

t 

lim sup L j [gk(t)- 9k(s)]Pk(s)ds > 1, 
t-.+oo kEK 

g*(t) 

where g*(t) = max{gk(t), k E K}. 
Then all bounded solutions of equation (1) are oscillatory. 
Proof Let y(t) be a bounded and nonoscillatory solution of equation 

(1). Without loss of generality we assume y(t) > 0 fort 2: t 1 (t1 2: t 0). Then 
y(gi(t)) > 0 fort 2: t2 2: tb i E Nn. Analogously to the proof of Theorem 5 

we obtain the inequality y" ( t) > 0 and y' ( t) < 0 for t 2: t3 2: t2 . From these 
observations, we conclude that y(t) is concave up and decreasing fort 2: t3 • 

Therefore, it lies above its tangent. That is, for f, s 2: t3 , 

y(f) + y'(f)(s- f) :::; y(s). 

We note that limt--.+oo 9k ( t) = +oo ,so the above inequality implies that 

y(gk(t)) + y'(gk(t))(gk(s)- 9k(t)) :::; y(gk(s)) 

for s, t sufficiently large, say s, t 2: t3 and for all k E K.Multiplying the 
abobe inequality by Pk(s) and summing up for all k E K, we get 

L Pk(s)y(gk(t)) + L y'(gk(t))(gk(s)- 9k(t))Pk(s) :::; 
kEK kEK 

n 

:::; L Pk(s)y(gk(s)):::; LPk(s)y(gk(s)) = y"(s). 
kEK k=l 
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Integrating the above inequality, with respect to s, from g*(t) to t, for t 
sufficiently large, we obtain 

t t 

L y(gk(t)) I Pk(s)ds + L y'(gk(t)) I (gk(s)- 9k(t))Pk(s)ds:::; 
kEK g*(t) kEK g*(t) 

n 

:::; y'(t)- y'(g*(t))- L LPliY(9i(Ti)). 
g*(t)~rl<t i=l 

Since y'(t) is increasing and gHt) 2 0 the above inequality, implies 

t 

y(g*(t)) L I Pk(s)ds + y(g*(t)) L L Plk-
kEKg•(t) g*(t)~r1<t kEK 

t 

-y'(g*(t)){'L I (gk(t)- 9k(s))pk(s)ds -1}:::; 0. 
kEKg*(t) 

The last inequality contradicts condition 3 of Theorem 7. 
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Abstract. Is it possible to formulate a discrete version of the Chanturia-Koplatadze 
Lemma? Some unsuccessful attempts on this way led to the publication of at least two 
erroneous papers. We explain the cause of the mistakes and state suitable counterexam-
p~. . 
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It is known that many phenomena occuring in continuous dynamical 
systems are observable in discrete dynamical systems as well. As a result, 
discrete version of various facts from the theory of differential equations is 
the main source for constructing the theory of difference equations. However, 
there are deep and interesting facts from the theory of difference equations, 
which do not follow from discretization of "continuous" statements. Simi­
larly, there are many "continuous" facts which do not have discrete analogues. 

The following statement is well known in the theory of delay differential 
equations: 

CHANTURIA-KOPLATADZE'S LEMMA 1 {INSIDE OF TH.2 IN [1]). Let 
x(t) > 0 be an eventually positive solution of the first order differential equa­
tion with retarded argument 

(1) x'(t) + a(t)x(t- r) = 0, T > 0, t;:::: 0 

* Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel 
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in which 

t 

(2) a(t) ~ 0, j a(s)ds > M > 0 Vt. 
t-T 

Then 

(3) 

What should be a discrete version of this statement? It turned out that this 
question is not that simple. Consider the Delay-Difference Equation (DI::l.E) 

(4) Yn+l - Yn + anYn-k = 0, k E N, n ~ 1 

The following very important open problem was formulated by G.Ladas 
in [2] (see Problem 7.11.4 in [8] as well): 

It is known that the Ladas-Philos-Sficas condition (see {3}} 

(5) an~O Vn, liE.~f(~Lai+n) > (k+k~)k+l 
implies oscillation of all solutions of Eq. (4). Extend Cond. (5) to 

Eq. (4) with oscillating coefficient {an} I 

In [4] it was declared that this problem has been solved. Unfortunately, the 
main results of the paper [4] (including the solution of the Ladas Problem) 
are wrong. This is because all results are based on an erroneous discrete 
version of the Chanturia-Koplatadze Lemma. 

Yu-B.G.ZHANG-QIANS LEMMA 1 (LEMMA 1 IN [4]). Assume that 
{Yn} is an eventually positive solution of Eq. (4) and 

(6) 

Then 

(7) 

k+l 

an ~ 0 L an+j ~ M > 0 Vn. 
j=l 

M2 
Yn > 4 ·Yn-k Vn I 

Its proof is erroneous. Moreover, the statement itself is wrong. Indeed, 
consider the following 
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COUNTEREXAMPLE 1. Let in Eq.(4) be k = 2, a3m := 1 -
!3m; a3m+i = 0, z 1, 2; lim ;3m = 0, 0 < !3m < ~· Then 

n-+oo 
2 

2:: an+i > 1\tf = ~' and Cond.(6) holds. On the other hand, define {Yn} by 
0 -

Y-2 = 0, Y-1 = Yo = 1, Y1 = Y2 = Y3 = 1, Y3m+l = Y3m+2 = Y3m+3 = 
m 

IT ,Bi, m ~ 1. 
i=l 
Obviously, the sequence {Yn} is an eventually positive solution of Eq.( 4) 
with the initial conditions Y-2 = 0, Y-1 = Yo = 1. But y!;'.:.. 2 = f3m for n = 
3m+ i, i = 1, 2, that is lim .JJ.n_2 = 0 and so, (7) is not valid. 

n-+oo Yn-

Note that there exists a weeker version of YZQ-Lemma in which the 
statement is replaced by "then there exists a sequence ns --+ oo such that 

]1;[2 " 
Yn. > 4Yn.-k 
(see [8], page 182 and [9]). But, unfortunately, this fact does not save the 
main results of [4]. 

Indeed, the authors assert that the equation 

(8) Yn+l - Yn + anYn-4 = 0, n ~ 1, } 
a9m+j = 0.00009, j = 0, 3; a9m+j = 0.006, j = 4, 8 

has oscillatory solutions only (Example 1, [4]). 
In view of the well known Erbe-Zhang Theorem (Th.2.3 in [6]), the con­

dition 
sup an < (k+~~Hl implies the existence at least one eventually positive solu-

tion of Eq.( 4). In the case of Eq.(8) sup an = 0.006 < :~ ~ 0.082, and so, 
Eq.(8) has at least one non-oscillatory solution. 

A similar misfortune took place in the work [5] as well. Lemma 2.3 in [5] is a 
generalization of the YZQ-Lemma and therefore is wrong. In any case, one 
of the two main results of [5] (Theorem 3.2), is wrong as well. We formulate 
below this wrong statement for a simplest particular case. 

Consider the second order difference equation 

(9) Yn+l - Yn + PnYn-l = 0, n ~ 1 

in which 

(10) Pn ~ 0, Pn-1 + Pn ~ d > 0 · 

Suppose that 

(11) ( R)
-1 

d4 d3 d3 
limsup(Pn-1 + Pn) > 1-- 1--+ 1--

n-+oc 8 4 2 
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where d is defined by (10). Then every solution of Eq.(9) is oscillatory. 
Here is a counterexample to this statement : 
COUNTEREXAMPLE 2. Put in (9) 

(12) P2m-1 =.A= 0.0001, P2m = J.l = 0.9799 Vrn . 

Then inf(Pn-1 + Pn) = sup(Pn-1 + Pn) = d = 0.98 and 

d > 1- ~4 ( 1- ~ + J1- ;
3

) -

1 
= 0.923. 

Then, according to Th.3.2, all solutions of Eq.(9) must be oscillatory. 
On the other hand, the second order difference equation with 2-periodic 

coefficient can be solved directly : 

Eq.(9) {::} { Y2m+l - Y2m + J.lY2m-1 _ 0 {::} 
Y2m+2- Y2m+l + AY2m - 0 

{::} { Y2m+2 - (1 - .A- J.t)Y2m + AJ.lY2m-2 = 0 
Y2m+1 = Y2m+2 + AY2m 

Therefore, the general solution of Eq.(9) is Yn = C1y~1 ) + C2y~2), in 
which 
y~~ = sj, y~~+l = sj(si +.A), j = 1, 2, and s1,2 are the roots of the 
characteristic equation 

(13) s2 
- (1- .A- J.t)s + AJ.l = 0. 

Eq.(13) has two positive roots s1 = 0.01142 and s2 = 0.00858 and so, 
all solutions of Eq.(9) are non-oscillatory. 

Thus, the Ladas Problem was not solved in [4]. However, this Problem has 
been solved in our work [7] (submitted May 1992). In Remark 2 in [7] this 
fact was specially declared. One of the possible applications of Th.4 and 
Cor.4.1 [7] is the following solution of the Ladas's Problem: 

are 

kk 2 2(k+l)k+l [ kk ] 
THEOREM 1. Let be C > (k+l)k+I, V < k2k+I C - (k+l)Hl 

00 

and G :=U [pn, qn], qn- Pn >; + k + 1, in which {Pn} ~ oo and {qn} 

arbitrary sequences. 
If an ?: C \In E G then all solutions of Eq. (4) are oscillatory. 
No limitations are imposed on the coefficient {an} outside G!! 

However, the following statement looks right for the discrete version of CKL: 
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THEOREM 2. Assume that {Yn} is an event'Ually positive solution of 

Eq.(4) and 

k 

(14) an 2 0, L an+j 2:: AI > 0 Vn. 
j=1 

Th /1[2 \-1 
en Yn > 4. Yn-k vn. 

Proof For all n consider the following two cases: an 2:: ~r, and an < Af. 
In the first case it is clear that 

Af 
Yn - Yn+l = anYn-k 2 

2 
Yn-k , 

n AI 
Yn-k- Yn+l = L aiYi-k 2 -;;Yn-k 

n-k ~ 

and therefore 

n*-1 
In the second case, there exists n*, n+ 1 ~ n* ~ n+k, such that 2::: ai < ~ 

n -

Hence 
n n*-1 n*-1 
"' a· - "' a·- "' a· > AI ~ ,- ~ t ~ ,_ ?' 

n•-k n*-k n+1 -
n 

Then Yn - Yn*+l Yn•-k - Yn+l L aiYi-k 2 
M 

Yn-k · 2· 
Combining the above two inequalities, we obtain 
0 

n*-k 

M M 2 

Yn > Yn•-k'2 2 Yn-k'4· 

Acknowledgments. I am very grateful to the anonymous referee that 
improved this proof. 
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Abstract. We consider the infinite system of differential functional equations 

Dtz;(t,x) = f;(t,x,z(t,x),Dxz;(t,x)), i EN, (t,x) E [O,ao) x R" 

where z = { z;} and Z(t,x) is the restriction ofthe function z to the set [t-bo, t] x [x-b, x+b] 
and this restriction is shifted to the set [ -bo, OJ x [ -b, bJ. For this system we prove the 
existence of weak solution satisfying the initial condition on [-bo, OJ x R". We consider the 
system of integral functional equations equivalent to differential one. Under the additional 
assumptions on the functions J;, i EN, we obtain the existence of classical solution of the 
Cauchy problem for differential functional system. 

Key Words. Cauchy problem, weak and classical solution, method of bicharacteristic, 
sequence of succesive approximations. 

AMS{MOS) subject classification. 35F25, 35D05, 45G10. 

1. Introduction. For any metric spaces X, Y we denote by C(X, Y) 
the class of all continuous functions defined on X and taking values in Y. 
We will use vectorial inequalities, with the understanding that the same 
inequalities hold between their corresponding components. 

We will denote by zoo the set of all infinite sequences p = {Pi}, Pi E R, 
such that 

IPioo =sup { IPil: i EN}< +oo. 
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Here N denotes the set of natural numbers. 
Let B = [-b0 ,0] X [-b,b] C Rl+n where b0 E R+,b = (b1 , ... ,bn) E R~ 

and R+ = [0, +oo). For a function z: [-bo, a0] x Rn ~zoo, z = {zi}, a0 > 0, 
and for a point (t, x) E [0, a0] x Rn we define the function Z(t,x) : B ~zoo by 
the formula 

Z(t,x)(T, s) = z(t + T, x + s), (T, s) E B. 

The function Z(t,x) is the restriction of z to the set [t- b0 , t] x [x - b, x + bJ 
and this restriction is shifted to the set B. 

Let Eo = [-b0 , OJ x Rn. Suppose that the sequences of functions f = 
{fi}, rp = { Cr?i}, where 

li: [0, ao] X Rn X C(B, l 00
) X Rn ~ R, 

Cr?i: Eo~ R 

are given. 
The paper deals with the Cauchy problem 

(I) 

(2) 
Dtzi(t, x) 

z(t, x) 
fi(t, X, Z(t,x), Dxzi(t, x)), i EN, 

rp(t, x) on Eo 

where Dxzi = (Dx 1 zi, ... , Dxnzi)· Infinite systems with a deviated argument 
and differential- integral systems can be derived from (1), (2) by specializing 
the operator f (see section 7). 

We will consider weak solutions of problem (1), (2) according to the 
following definition ([3J). 

DEFINITION 1. A function u : [-b0, a] x Rn ~zoo where 0 < a :5 a0, u = 
{ Ui}, is a solution of the above problem if 

(i) u is continuous on (-b0 , a] x Rn and there exist the derivatives Dxui, 
i EN, on [0, a} x Rn, 

(ii} the function u( ·, x) : [0, a] ~ zoo is absolutely continuous on (0, aj for 
each x ERn, 

(iii} for each x E ~ the function u satisfies system {1} for almost all 
t E [0, aJ and condition (2} holds. 

This class of weak solutions is placed between classical solutions and 
solutions in the Caratheodory sense. What is more both inclusions are strict. 

In this time numerous papers were published concerning various prob­
lems for hyperbolic functional differential equations. It is not our aim to 
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show a full review of results concerning these problems. vVe shall mention 
only those which concern existence results for the Cauchy problem with re­
spect to nonlinear hyperbolic equations. They are [1] - [13]. The following 
methods are more frequently adopted for proving existence of classical or 
weak solutions: the method of succesive approximations, the fixed point 
method based on the Banach theorem, difference methods, the method of 
bicharacteristics. 

The papers [8], [10] - [12] initiated the theory of infinite systems of first 
order partial functional differential equations. Initial problems on unbounded 
domains for almost linear systems are considered in [8]. The Chaplygin 
method of approximation of classical solutions is presented. The paper [12} 
deals with comparison theorems generated by a generalized Cauchy problem 
for nonlinear infinite systems. The following questions are discussed: error 
bounds for an approximate solution, uniqueness of the solution and its con­
tinuous dependence on the right hand sides of the system and on the initial 
functions. Infinite systems of functional differential inequalities on the Haar 
pyramid were considered in [11]. The paper [10} concerns the existence of 
classical solutions of the initial value problem for nonlinear functional dif­
ferential systems. The result is proved by using differential inequalities and 
by the Banach fixed point theorem. Note that the results of the paper [10] 
do not cover the existence theory for systems with a deviated argument and 
integral differential systems of the Volterra type. 

We will discuss the question of the existence of solutions to problem (1 ), 
(2). Our results are based on the method of bicharacteristics. It consists 
on linearization of the right hand side of equations with respect to unknown 
function. In the second step a quasilinear system is constructed for unknown 
functions and for their spatial derivatives. The system thus obtained is equiv­
alent to a system of functional integral equations of the Volterra type. The 
existence and uniqueness of solutions of this system will be proved by using 
integral inequalities and by the Banach fixed point theorem. 

Our results are generalizations of the existence theorems from [1}, [5}, 
[10]. 

2. Function spaces. For x = (x1, ... ,xn) E Rn we put lxl = lx1l + 
... + lxnl· We will use the symboll': to denote the space of sequences r = 
{ri}, Ti = (ril, ... , Tin) ERn fori EN, such that 

lrln.oo =sup { lril : i E N } < +oo. 

Let ll·llo denote the supremum norm in the space C(B, l00
). We will use 

the symbol CL(B, zoo) to denote the class of all functions wE C(B, zoo) such 
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that 

{
lw(r,s)- w(r,s)loo _ } 

llwi!L =sup Is_ sl : (r, s), (r, s) E B < +oo. 

Write llwllo.L = llwllo + llwiiL where wE CL(B, zoo). 
Let C0·1 ( B, zoo) be the set of all continuous functions w : B ~ zoo, w = 

{ wi}, such that the derivatives 
Dswi = (Dsl Wi, ... , Dsn wi), i EN, exist and Dsw = {Dswi} E C(B, Z':'). 

For wE C0·1(B, zoo) we put 

llwlll = llwllo +max { IDsw(r, s)ln.oo: (r, s) E B }. 

We will use the symbol Cf·1(B, zoo) to denote the set of wE C0·
1(B, zoo) 

such that llwl h.L < +oo where 

II II II II {
IDsw(r,s)-Dsw(r,s)ln.oo ( ) ( _) } 

w l.L = w 1 +sup Is _ sl : r, s , r, s E B . 

The next function spaces are the following. Given c = (co, c1, c2) E Rt, 
we denote by C6·L[c] the set of all functions c.p : E0 ~ zoo, c.p = {<Pi}, such 
that 

(i) c.p E C(E0 , zoo), there exist the derivatives Dx<Pi on Eo for i E N and 
Dxcp = {Dx<Pi} E C(Eo, Z':'), 

(ii) lc.p(t,x)loo ~co, IDxc.p(t,x)ln.oo ~ C1 and 

IDx<P( t, X) - Dx<P( t, X) ln.oo ~ c21x - xl on Eo. 

Let L([O, t], X), where t > 0, X is the linear normed space, denote the 
class of all the functions ( : [0, t} ~ X such that 

{ l!((r)lldr < +oo. 
vO 

Let c.p E CJ·L[c] be given and let a E (0, ao], d = (do, d1, d2) E R!, ,\ = 
(..\0, ..\I) E L([O, a], R~). We will denote by C~:~[d, ..\] the set of all functions 
z : [-bo, a] X Rn ~ zoo such that z E C([-bo, a] X ~' l00

), z(t, x) = c.p(t, x) 
on E0 and 

(i) there exists Dxz on [0, a] x Rn, 
(ii) lz(t,x)loo ~do and IDxz(t,x)ln.oo ~ d1 on [O,a] X~' 
(iii) for t, [ E [0, a], x, x E Rn we have 

lz(t,x)- z(f,x)loo ~I hi Ao(r)drl 
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and 

Let p = (p1 , p2 ) E R~, It E L ( [ 0, a], R+). Let us denote by C2·L [p, It] the class 
of all functions v : [0, a] x Rn __.. l':' such that v E C([O, a} x ~, l;:') and 

(i) lv(t, x)[n.oo ::; P1 on [0, a] X Rn, 
(ii) for (t,x), (t,x) E [O,a) x Rn we have 

iv(t,x)- v(t,x)ln.oo::; 11£ Jt(r)drl + P2ix- xi. 

We will prove that under suitable assumptions on f and rp, and for sufficiently 
small a E (0, a0], there exists a solution z of problem (1), (2) such that 
z E C~:~[d, .\] and for v = (Dxz)l[o,a]xRn we have iJ E C2·L[p, Jt]. 

3. Bicharacteristics of nonlinear systems. Let 8 be the class of all 
the functions 8: [0, a0J x R+ __.. R+ such that 8(·, r) E L([O, a0}, R+) for every 
T E R+ and 8(·, r) : R+ __.. R+ is nondecreasing for almost all T E [0, a0]. 

Write 

We start with assumptions on Dqf· 
Assumption H1 • Suppose that Dq/ exists on n(l) and 
1) Dq/(·,x,w,q) E L([O,a0J,l;:') and there is (3 E e such that 

IDqf(t,x,w,q)ln.oo::; (J(t, llwfll) on n(l), 

2) there is '"Y E 8 such that for (t,x,h,q) E n(1), x,ijE Rn, 
wE C£·1(B, zoo) we have 

IDqj(t, X, W, q)- Dqj(t, X, W + h, iJ.)In.oo ::; 

Suppose that rp E CJ·L[c] and z E C~:~[d, .\], u E C2·L[p, Jt], u = { ui}· 
Let 

(3) 
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For each i E N consider the Cauchy problem 

(4) 

where (t, x) E [0, a] x Rn. Let us denote by gi[z, u](·, t, x) the Caratheodory 
solution of (4). The function gi[z,u](·,t,x) is the i-th bicharacteristic of 
system (1) corresponding to (z, u). Let 

g[z,u](·,t,x) = {gi[z,u](·,t,x)} 

be the set of bicharacteristics of (1) corresponding to (z, u). 
Let ll·ll(t), ll·ll(n.t) and 11·11 [n.t] denote the supremum norms in the spaces 

C([-b0,t] x ~,100 ), C([-b0,t] x Rn,l':) and C([O,tJ x Rn,l':) respectively, 
t E [0, ao]. 

Main properties of bicharacteristics are given in the following lemma. 
LEMMA 1. Suppose that Assumption H 1 is satisfied and the functions 

rp, r:p E CJ·L[c], z E C~:;(d, A], z E C~:~(d, A), u, u E C2·L[p, JL] 

are given. 
Then the sets of bicharacteristics g[z, u)(·, t, x) and g(z, u](·, t, x) exist on 

[0, a] for every (t, x) E [0, a] x Rn, they are unique and we have the estimates 

lg[z, uJ(r, t, x)- g[z, u](r, t, x)ln.oo ~ 

(5) ~ (1 [i {3({, d)d{l + lx- xi) exp ( d I [
7 

1'({, ldl)d{l) 

and 

lg[z, u](r, t,x)- g(z, u}(r, t,x)ln.oo ~ exp ( d I [
7 

1'({, ldl)d{l) · 

(6) ·1[7 

1'({, ldl)(llz- zll<e> + IID:~:z- D:~:zll(n.e) + llu- ull[n.eJ)del 

where 

Proof. The existence and uniqueness of the solutions of ( 4) follows from 
classical theorems. Note that the right hand side of the differential system ( 4) 
satisfies the Caratheodory assumptions and the following Lipschitz condition 
holds 
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:s; 'Y(T, ldl)d In- ill on [0, a] x Rn. 

The function gi[z, u](·, t, x) satisfies the integral equation 

gi[z, u](r, t, x) = x + lt Dqfi( ~[z, u](~, gi[z, u](~, t, x)) )d~, i EN. 

It follows from Assumption H 1 that we have the integral inequality 

lg[z, u](r, t, x)- g[z, u]( r,f, x)ln.oo :s; lx- xi+ 11f ;J(~, d)d~l+ 

+d 11r 'Y(~, ldl) lg[z, u](~, t, x)- g[z, u](~, t, x)ln.ood~l, 

(t, x), (t, x) E [0, a[ x Rn and we obtain (5) from the Gronwall inequality. 
For z E C~:~[d,-\], z E C~;$[d,-XJ, u,il E C~·L[p,M] we have 

lg[z,u](r,t,x)- g[z,u](r,t,x)fn.oo :s; 

+d ilr 'Y(~, ldl) lg[z, u](~, t, x)- g[z, il](~, t, x)ln.ood~l-
t . 

From Gronwall inequality we deduce (6). This proves Lemma 1. 

4. Integral functional equations. Now we formulate a system of in­
tegral functional equations corresponding to problem ( 1), ( 2). 

We will denote by CL(X, zoo) the set of all linear and continuous map­
pings from normed vector space X into zoo. Let II · llx be the norm in 
CL(X, zoo). We will consider the space CL(X, zoo) with X = C(B, zoo), 
X = C L ( B, zoo) or X = zoo. We formulate now further assumptions on f. 

Assumption H 2 • Suppose that 
1) there is a E 8 such that 

if(t, x, w, q)ln.oo :s; a(t, llwllo) on [0, ao] X Rn X C(B, zoo) X Rn' 

2) for every (t,x,w,q) E O(l) there exist the derivative Dxf(t,x,w,q) 
and the Frechet derivative Dwf(t, x, w, q) E CL( C(B, zoo), zoo), assume that 

IDxf(t, X, W, q)ln.oo :S ;J(t, l!wlll), IIDwf(t,x, w, q)llc(B,l=) :S ;J(t, llwlh), 
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3) the terms 

IDxf(t, X, W, q)- Dxf(t, X, W + h, q)ln.oo 1 

IIDwf(t, X, W, q)- Dwf(t, X, W + h, lJ)IIcL(B,l00 ) 1 

where (t, x, h, q) E n<1), x, q E Jet, wE C£·1(B, l00
), are bounded from above 

by 

For simplicity of notation, we have assumed the same estimation for 
derivatives Dxf, Dwf, D9 f. We have assumed also the Lipschitz condition 
for these deriatives with the same coefficient. 

Suppose that cp E CJ·L[c]. Let C2:~[p, JL] be the class of all functions 
u : [-bo, aJ X Jet ~ l': such that u = Dxcp on Eo and ul[o,a]xRn E C2·L[p, JL]. 

Let cp E CJ·L[c], z E C!:~[d, A], u, v E C2:~[p, JL] be given. Put 

Qi( T, t, x) = ( T, 9i( T, t, X), Z(-r,g;(-r,t,x)) 1 Ui( T, 9i( T, t, X))), i E N, 

where gi(·, t, x) is the i-th bicharacteristic corresponding to (z, u) (for sim­
plicity of notation, we ignore the dependence of 9i on (z, u)). 

Write for (t,x) E [O,a] x Rn 

Fi[z,u](t,x) = 'Pi(O,gi(O,t,x))+ 

and 

where 



GENERALIZED SOLUTIO;.;S 313 

Moreover we put 

F[z, v] = {Fi[z, u]}, 

Gi[z, u, v] = (Gil[z, u, v], ... , Gin[z, u, v]), i EN, 

and 

G[z, u, v] = { Gi[z, u, v]}. 

We will consider the following system of functional integral equations 

z = F[z,u], u = G[z, u, u], 
(7) z = cp on E0 , u = Dxcp on Eo, 

9i(r,t,x)=x + 1tDqfi(Qi(f,,t,x))df,, iEN. 

The above system is obtained in the following way. We introduce an addi­
tional unknown function u = Dxz in (1) and we consider the linearization of 
(1) with respect to u: 

Dtzi(t, x) /i(~[z, u](t, x )) + 
n 

(8) + L Dqk/i(fi[z,u](t,x))(Dxkzi(t,x)- Uik(t,x)). 
k=l 

For the unknown function u we get the differential system 

n 

(9) + L Dqkfi(~[z, uJ(t, x))Dxk Uij(t, x). 
k=l 

Now we put Dxz = v in (9). The differential equations ofbicharacteristics for 
(8) and for (9) are the same and they have form ( 4). If we consider (8) and 
(9) along the bicharacteristics g[z,uJ(·,t,x) we obtain fori EN, 1:::; j:::; n 

d 
dr Uij( T, 9i(T, t, X)) = Dxjfi( Qi( T, t, x)) + Dwfi( Qi(T, t, X))( V-j)(r,gi(T,t,x))· 

By integrating on [0, t] with respect to T and taking v = u we get (7). 
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5. The sequence of succesive approximations. The proof of the 
existence of the solution of (7) will be based on the following method of 
succesive approximations. 

Suppose that r.p E CJ·L[cJ. We put 

zC0>(t, x) = r.p(t, x) and uC0>(t, x) = Dxr.p(t, x) on Eo, 

(10) zC0>(t,x) = r.p(O,x) and uC0>(t,x) = Dxr.p(O,x) on [O,a] x Rn. 

If (z(m) uCm)) E CLL[d ,\) X C0·L[p ") are known functions then 
' a.cp ' a.cp ' ~'-" ' 

uCm+I) is a solution of the problem 

(11) u = G[zCm), u, uCm>], u = Dxr.p on Eo 

and zCm+I) is defined by 

(12) zCm+I) = F[z(m), uCm+I)], z(m+I) = r.p on E0• 

We wish to emphasize that the main difficulty in carrying out of this 
construction is the problem of the existence of the sequence {zCm>, uCm)}. 

Now we prove the main properties of the sequence {z(m),u(m)}. 
THEOREM 1. If Assumptions HI, H2 are satisfied, then there exist 

a E (O,ao) andd = (do,di,d2) E R~, p = (pi,P2) E R~, .A= (.AI,,\2) E 

L([O, a], R~), Jl E L([O, a], R+) such that for any m?: 0 we have 
(i) z(m), u(m) are defined on [-bo, a] x Rn and 
(ii) z(m) E CLL[d .A) u(m) E C0·L[p ") 

a.cp ' ' a.cp ' ~'-" ' 
(iii} Dxz(m) = u(m) on [0, a] X Rn. 

Proof. Write 

fo(t) = f(t) ( c2 + (1 + PI)d f /'(7, idi)dr + P2 t (J(r, d)dr), t E [0, a]. 
• .,. ""' "'V / 

Suppose that 

(13) di > Ci, i = 0, 1, 2 and Pi= di, i = 1, 2. 

Moreover, suppose that a E (0, a0] is small enough to satisfy 

CI + (1 +pi) loa (J(r,d)dr ~PI, fo(a) ~ P2, 

(14)foa J'(T, idi)dr[l + Pl + r(a)(c2 + (1 + Pl)d loa '"Y(T, idl)dr)] < 1, 

co+ ka ( a(r, do)+ PIP(r, d) )dr ~ do. 
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We define 

Ao(r) - a(r, do)+ Ptf3(r, d)+ (3(r, d)ft(a) · 

(15) · ( Ct + (d + P2) loa (3(~, d)d~ + Ptd loa!'(~, ldi)d~ ), 

At( r) = J.L( r) = (3( r, d)(1 + Pt + f(a) ). 

We use the method of induction with respect tom. It follows from (10) that 
the theorem is true for m = 0. Suppose that conditions (i), (ii) and (iii) 
hold for a given m ~ 0. 

We will prove that there exists u(m+l) : [-b0 , a] x [('l - l:;' and u(m+l) E 

C2:~[p, J.L]. We claim that 

(16) 

Indeed, for u E C2:~[p, J.L] we have 

on [0, a] x [('l and 

IG[z<m), u, u<m>](t, x)- G[z<m), u, u(m)](f, x)ln.oo :5 

:5 11f (3(r, d)(1 + Pt + fo(a))drl+ fo(a)lx- xl 

on [0, a] x Rn. It follows from (14) and from the definition of J.l that (16) 
holds. 

We conclude from Assumption H2 and from Lemma 1 that for u, u E 
C2:~[p, J.L] and (t, x) E [0, a] x [('l we have 

IG[z(m)' u, u<m>](t, x)- G[z(m)' u, u<m>](t, x)ln.oo :5 Callu- ullcn.a} 

with 

Thus by (14) the operator G[z(m), ·, u<m>J is a contraction and from Banach 
fixed point theorem it follows that there exists u<m+l) on [-b0 , a] x Rn and 
uCm+l) E C2_-;[p, JL]. 
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Now we prove that for the function z(m+l) given by (12) we have 

Dxz<m+l)(t, x) = u<m+l)(t, x)on [0, a] X Rn. 

Write ~(t,x,x) = {~i(t,x,x)} and 

n 
" ( _) (m+l) ( -) (m+l) ( ) ""' (m+l) ( ) (- ) ui t,x,x = zi t,x - zi t,x - L..... uik t,x xk- xk 

k=l 

where t E [0, a], x, x ERn. We prove that there exists c E R+ such that 

i~(t,x,x)ln.oo :S c lx- xj 2 fortE [O,a), x,x ERn. 

Write 

n ( ) ( [ (m) (m+l)] ( t ) ,.(m) .liT= T,giz ,U T, ,X,,.( ·[(m) (=+IlJ( t ))' T,g1 Z ,u T, ,x 

u~m+l)(r, gi[z(m), u(m+l)](r, t, x))) 

and denote by Pi( r) the point given by the above formula with x instead of 
x. According to (12), we have 

n 

~i(t, x, x) = 'Pi(O, 9i(O)) - 'Pi(O, gi(O)) - L Dx,. 'Pi(O, gi(O) )(xk - xk)+ 
k=l 

Write 

and 

1i(r, a-)= (r, gi(r) + o-(gi(r)- gi(r)), z[;:;;(T)) + o-(z~j;(T))- zi;:;;(T))), 
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(m+l)( ( )) ( (m+l)( _ ( )) (m+l)( ( )))) Ui T, 9i T + 0' Ui T, 9i T - Ui T, 9i T . 

Applying the Hadamard mean value theorem to the difference /i(P(T))­
fi(Pi(T)) we deduce 

For each i EN we will write ~i(t, x, x) in the form 

~i(t,x,x) = ~p>(t,x,x) + ~~2)(t,x,x) 

where 

~~ 1>(t,x,x) = 

= 'Pi(O, 9i(O))- 'Pi(O, 9i(O))- t Dxk'Pi(O, 9i(O)) ( 9i(O)- 9i(O)) + 
k=l 
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and 

.6.~2\t, x, x) = :t Dxk IPi(O, 9i(O)) ( 9ik(O) - 9ik(O) - (xk - Xk)) + 
k=l 

Our next claim is that .6.~2}(t, x, x) = 0 for i E N. It follows from ( 4) that 

and thus we have 

+loT Dx~cfi(~(f.))df. +loT fi(~(f.))(u~;;>)(e,9;(e))df.- u~;;+I>(T,gi(T))]dT. 

We have 9i[z(m),u(m+l)](f,,T,gi[z<m),u(m+l)](T,t,x)) = gi[z<m>,u(m+l)](E;,t,x) 
for f,, T E [0, t], therefore we get 
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and consequently L.l~2)(t,x,x) = 0 fortE [O,a], x,x ERn, i EN. Then we 
have proved that 

It follows from the induction hypothesis that Dxz(m) = u(m). An easy com­
putation shows that 

We conclude from Assumptions H1 and H2 that 

+ ht ( -y(r, ldl)d (1 + d1 + P2) + (J(r, d)d2) l9i(r)- 9i(r)l2dr. 

It follows from Lemma 1 that l9i(r)- 9i(r)l :::; f(a)lx -xj. Then there exists 
a constant c > 0 such that 

IL-l(t, x, x)ln.oo :::; c lx- xl2 

and consequently 

(17) 

Now we prove that z(m+l) E C~:;[d, -X]. 
Of course z(m+I). is continuous on [-b0, a] x ~ and z(m+I) = <p on E0• It 
follows from (13), (17) that 

Assumptions H~, H2 and (14), (15) imply the estimates 

which complete the proof of the theorem. 
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We can now formulate the result on the convergence of the sequence of 
succesive approximations. 

THEOREM 2. If Assumptions H1 , H2 are satisfied, then there exist 
a E (O,ao] and d = (do,d1,d2) E R~, p = (PbP2) E R!, A= (AbA2) E 
L([O,aJ,R!), 11 E L([O,a],R+) such that the sequences {z(m)} and {u(m)} are 
uniformly convergent on [-bo, a] x R"' to z E C~:~[d, A] and u E C2:~[p, 11] 
respectively. 

Proof. Suppose that the constants d, p, a and the functions A, 11 satisfy 
(13) - (15). Form 2 1 and fortE [0, a] we put 

zCm)(t) =sup { jz(m)(f, x) - zCm-l)(f, x)ln.oo : (t, x) E [0, t] x Rn}, 

At first we prove that 

where 

Write gfk)(r) = 9i[z(k-l), u(k)](r, t, x), k = m, m + 1. According to (11), we 
have 
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Using the estimates 

and 

we obtain the integral inequality 

The above estimate and Gronwall inequality imply (18). 
Now we estimate the function z<m+I>. We conclude from (12) that 

+lot (J(r, d)lu~m+l)(r, g~m+l)(r))- u~m)(r, g~m}(r))jdr, 

and finally that 

where 

321 
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Writing 

and using (18) and (19) we obtain 

z(m+l)(t) ::; lot [ (c5l(r)f'(a) + bl(r))z(m)(r) + 

(20) +(c52(r)f'(a) + 81(r))u(m)(r)Jdr. 

Assume that a E (0, a0] is such a small constant that 

(21) foac52(r)dr[exp(foac5l(T)dr)+f'(a)]+foa6!(T)dr < 1. 

By (18) and (20) we conclude that there exits c5 E (0, 1) such that 

(22) U(m+l)(t) + z(m+l)(t) :S c5 ( U(m)(t) + z(m)(t)), t E [0, a], m ~ 1. 

From (10) and from Assumptions H1, H2 it follows that there is c E R+ such 
that 

U(1>(t) ::; c + (1 +pi) ht /3( T, d)dr, 

where t E [0, a]. Finally the convergence of the sequence { z(m), u<m)} follows 
from (22). 

This completes the proof of Theorem 2. 

6. The main theorem. We are able now to state the main result of 
the paper. 

THEOREM 3. If Assumptions H11 H2 are satisfied, then there exists a 
solution z of the problem {1},{2) and z E c;:;[d, .AJ, Dxz E C!:;[p, JL] with 
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rp E CJ·L[c] and a E (0, a0 ], d E R!, p E R~, ,\ E L([O, a], R~), J.1 E 
L([O,a],R+) satisfying {13)- {15), (21). 

Proof. From Theorem 2 we deduce that the sequence { z(m)} converges 
to z and { uCm)} converges to u uniformly on [-b0 , a] x Rn. Furthemore, we 
have that Dxz exists on [-b0 , a] x ~ and Dxz = u. Thus we get that 

-t Dqk/i(Pi[z, Dxz](T, gi(T, t, x)))Dxkzi( T, gi(T, t, x)) )dT 
k=l 

where gi(T,t,x) = gi[z,Dxz](T,t,x) and Pi[z,Dxz] is given by (3) with z = z 
and u = Dxz. 
For given x ERn and~= gi(O,t,x) we have gi(T,t,x) = gi(T,O,~) and 
x = gi(t, 0, 0. Therefore 

(23) Zi(t, gi(t, 0, ~)) = 'Pi(O, 0 +lot (ti(Pi[z, Dxz}(T, gi(T, 0, ~))) + 

-t Dqk/i(~[z, Dxz](T, gi(T, 0, ~)))DxkZi(T, gi(T, 0, ~)) )dT 
k=l 

By differentiating (23) with respect to t and puting gi(t, 0, ~) = x, we 
obtain that z satisfies (1) for almost all t E [0, a] with fixed x ERn. 

Since z satisfies initial condition (2) the proof is complete. 
If in Theorem 3 we assume that f is continuous, then we get classical 

solutions for Cauchy problem (1), (2). 

7. Some noteworthy particular cases. We wish to emphasize that 
our hereditary setting contains in particular some well known delay struc­
tures. 

Given the functions 

rp: Eo~ zoo, j: [O,ao] X Rn X zoo X Rn ~zoo, j = {h} 

and 

1/Jo : [0, ao] ~ R, 1/J : [0, ao] X Rn ~ Rn, 

we consider the function f = {/i} : [0, ao] X Rn X C(B, zoo) X Rn ~zoo defined 
by 

(24) f(t,x,w,q) = f(t,x,w(¢0(t)-t,1jJ(t,x)-x),q). 
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In this case (1), (2) is equivalent to the differential system with deviated 
argument 

(25) Dtzi(t, x) = h(t, x, z(7/Jo(t), 1/J(t, x)), Dxzi(t, x)), i EN 

with the initial condition (2). 
Now we formulate our existence result for problem (25), (2). 
Assumption H3 • Suppose that 
1) the function j satisfies the conditions: 

there is A E R+ such that if(t, x, f2, q)loo ::; A on [0, ao] x Rn x zoo x Rn; 
the derivatives Dxf, Dqj and D!!j E C L(l00

, zoo) exist on (0, a0] xRn xzoo xRn 
and there is B E R+ such that 

1Dxf(t,X,f2,q)ln.oo:::; B, 1Dqj(t,X,f2,q)ln.oo :=:; B, 

there is L E R+ such that for (t, x, {2, q), (t, x, g, ij) E [0, a0] x Rn x zoo x Rn 
the terms 

are bounded from above by 

2) the functions 7/Jo and 'ljJ = (7/Jl? ... , 7/Jn) satisfy 
the conditions: 

they are continuous and ('if;0(t)- t, 7/J(i, x)- x) E B for (t, x) E [0, a0J x Rn; 
the derivative Dx7/J exists on [0, a0] x Rn and 

The theorem reduces to the following one. 
THEOREM 4. Suppose that Assumption H3 is satisfied and let cp E 

C~'L(c). Then there exist a E (0, a0], dE R!, A E L([O, a], R~) and a function 
z E C~:~[d, .:\) such that z is a solution of problem {25}, {2) on [-b0 , a] x Rn. 

Proof. In order to apply Theorem 3 to the function f given by (24), let 
us show that the Assumptions H1 and H2 are fulfilled. 
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Observe that in D(l) we have for i E N, 1 ~ j :::; n 

D x J; ( t, x, w, q) = D x j h ( t, x, n· ( 1fJo ( t) - t, v ( t, x) - x), q) + 

+DcJi(t,x,w(1/Jo(t)- t,'lj;(t,x)- x),q)· 

n 

· L Dskw(1/Jo(t)- t,?j·(t,x)- x)(Dxjl/Jk(t,x)- Dkj), 
k=l 

where Dkj is the Kronecker symbol, 

Dwf(t, x, w, q)h = Dgj(t, x, w( '1/Jo(t)- t, '1/J(t, x)- .1: ), q)h( '1/Jo(t)- t, '1/J(t, x) -x) 

where hE C(B, zoo) and 

Dqf(t,x,w,q) = Dqf(t,x,w('I/Jo(t)- t,?jJ(t,x) -x),q). 

Thus it is easy to see that Assumptions H1 and H 2 are satisfied and the 
assertion follows as an immediate application of Theorem 3. 

If we consider the function defined by 

f(t,x,w,q) = f(t,x, ~ w(r,s)drds, q) 

then system ( 1) reduces to the differential integral system 

Dtzi(t,x)=f(t,x,j
0 

jb z(t+r,x+s)dsdr, Dxzi(t,x)). 
-bo -b . 

It is easy to formulate sufficient conditions for the existence of the solutions 
of the above system with the initial condition (2) again as an application of 
Theorem 3. 

Note that we have assumed the Lipschitz condition for the functions 
Dxf, Dwf, Dqf on some special functions spaces (see Assumptions H1 , H2). 

The Lipschitz condition is local with respect to the functional variable. It is 
important in our considerations. 

Let us consider the simplest condition: suppose that there is L E R+ 
such that on D(l) 

(26) 

IDqj(t, X, W, q)- Dqj(t, X, W + h, q)ln.oo :::; 

:::; L(ix- xi+ llhll1 + lq- t1i) 
and analogous inequalities for the derivatives Dxf, Dwf. 

It is easy to see that equations with a deviated argument (25) do not 
satisfy conditions of type (26), while they fulfill Assumption H3 . 
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Abstract. 
The phase space for quasilinear equations with unbounded delay is constructed. A 

theorem on the existence, uniqueness and continuous dependence upon initial data is given. 
Classical solutions of initial problems for equations in a Banach space are investigated. 
The method of bicharacteristics and integral inequalities are used. 
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1. Introduction. For any metri<; spaces U and V we denote by C(U, V) 
the class of all continuous functions defined on U and taking values in V. If 
z : U -+ V and A C U then z1A denotes the restriction of z to the set 
A. We will use vectorial inequalities with the understanding that the same 
inequalities hold between their corresponding components. 

Suppose that U and V are domains in Rk and Rm respectively and the 
function v : u-+ v of the variable y = (yl, ... 'Yk) is of class C 1

. Then OyV 
denotes the Jacobi matrix of v. 

Let E = [-r0, 0] x [-r, r] C Rl+n where r0 E R+, R+ = [0, +oo), and r = 
(r1 , ... ,rn) E R:;:_. Suppose that a> 0, (t,x) E [O,a] X Rn, x = (xb···,xn), 
and z : [-ro, a] x Rn -+ Rn. We define a function Z(t,x) : E -+ R as follows: 
Z(t,x)(T, s) = z(t+r, x+s), (r, s) E E. Assume that F: [0, a] x ~ xC(E, R) x 
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Rn ---+ Rand c.p : [ -r0 , OJ x Rn ---+ Rare given functions. In this time numerous 
papers were published concerning the initial problem 

Otz(t,x) = F(t,x,z(t,:x),O:xZ(t,x)), z(t,x) = c.p(t,x) on [-ro,O] x Rn, 

where O:xZ = (8:x 1 z, ... , O:xnz) and for adequate initial-boundary value prob­
lems. The following questions were considered: functional differential in­
equalities generated by initial or mixed problems, existence theory of classical 
or generalized solutions, numerical method of lines for hyperbolic problems, 
difference methods for initial or initial-boundary value problems. All these 
problem are such that the set E is bounded. The theory of hyperbolic func­
tional differential problems has been developed in the monograph [6], see also 
[1], [2}. 

The papers [3], [5] initiated the investigation of hyperbolic functional 
differential equations with unbounded delay. Initial and initial - boundary 
value problems for quasi - linear equations were considered. The set of axioms 
for phase spaces given there seems to be in final form for Caratheodory 
solutions. 

The theory of ordinary functional differential equations with unbounded 
delay has been described extensively in the monographs [4], [7]. 

In the paper we start the investigations of classical solutions of first order 
partial differential functional equations with unbounded delay. It is the pur­
pose to examine initial data from a general Banach space. We develop a the­
ory of existence, uniqueness and continuous dependence on initial functions 
for quasilinear equations. The method of bicharacteristics and functional 
integral inequalities are used. 

We formulate the problem. Let B be a Banach space with the norm 11·11· 
The norm in~ will also be denoted by 11·11. Namely, for x =(xi? ... ,xn) E 

Rn we put llxll = lx1l + ... + lxnl· If y = (YI, ... , Yn) E Bn then we write also 
IIYII = IIY1l1 +·.·+llYn II· Let D = ( -oo, OJ X [-r, r], DC Rl+n, r E R+· For 
a function z : ( -oo, b] x Rn ---+ B, b > 0, and for a point (t, x) E [0, b] x ~ 
we define a function Z(t,:x) : D---+ B by Z(t,:x)(r, s) = z(t + r, x + s ), ( r, s) E D. 
The function Z(t,:x) is the restriction of z to the set ( -oo, t] x [x -- r, x + r] 
and this restriction is shifted to the set D. The phase space X for partial 
differential equations with unbounded delay is a linear space with a norm 
ll·llx, consisting of functions mapping the set D into B. Let a> 0 be fixed 
and suppose that 

f: [O,a] X~ X X---+ B, c.p: (-oo,O] X Rn---+ B, 
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are given functions. We consider the quasilinear equation 

n 

(1) OtZ(t, x) + L Qi(t, X, Z(t,x)) Ox,z(t, x) = f(t, X, Z(t,x)) 
i=l 

with the initial condition 

(2) z(t,x)=cp(t,x) on (-oo,OJxRn. 

We will deal with classical solutions of (1), (2). In other words, a function 
u : ( -oo, b] x Rn -+ B, where 0 < b ~ a, is a solution of the above problem 
provides 

(i) ill[o,b]xRn is continuous and the derivatives 

exist on [0, b] x Rn, 
(ii) the function u satisfies equation (1) on [0, b} x Rn and condition (2) 

holds. 

Differential equations with a deviated argument and differential-integral 
equations can be derived from a general model by specializing given opera­
tors. 

2. Definitions and fundamental axioms. Assume that b > 0, t E 
[0, b} and w : ( -oo, b] x [-r, r] -+ B. We define a function W(t} : D -+ B by 
W(t)(T, s) = w(t + T, s), (T, s) ED. For each t E [0, b] the function W(t) is the 
restriction of w to the set ( -oo, tJ x [-r, rJ and this restriction is shifted to 
the set D. 

If w : ( -oo, b] X [-r, r] -+ B, b > 0, and Wi[o,b]x[-r,rJ is continuous then 
we put 

II w ll[o,t] =max { llw(T, s)ll: (T, s) E [0, tJ x [-r, r] }, t E [0, b]. 

Suppose additionally that the derivatives OtW, OxW = (ax 1 w, ... , Oxn w) exist 
and are continuous on [0, b] x [-r, r]. Then we write 

llwllf~!t] = llwll[o,t]+max{ll8tw(T,s)ll: (T,s) E [O,t] x [-r,r]} 

+max{ !laxw(T,s) II: (T,s) E [O,t} x [-r,r]}, 
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where t E [0, b]. If the derivatives OtW, Bxw satisfy the Lipschitz condition 
with respect to (t,x) on [O,b] x [-r,r] the we put 

=sup { IIBtw(r, s)- Otw(t, s)ll .· } 
I I II II (r,s),('f,s)E[O,t]x[-r,r] t-t + s-s 

{ 

IIBxw(r, s)- Oxw(t, s)ll 
+sup : it - ti + lis - sll 

(r, s), (1', s) E [0, t] x [-r, r]} 

and 

The fundamental axioms on the phase space X are the following. 
AssuMPTION H [X J. Suppose that 
1) (X, II · llx) is a Banach space and 
(i) if w : ( -oo, b] x [-r, r] ---+ B, 0 < b :S a, is a function such that 

W(o) E X and wlro,bJx[-r,rJ is continuous then W(t) E X for t E [0, b}, 
(ii) there are constants K, K0 independent of w such that 

(3) II W(t) llx :S K II w il[o,t] + Koll W(o) llx, t E [0, bJ, 

2) if z: ( -oo, b] x Rn ---+ B is a function such that Z(o,x) EX for x E Rn 
and ZJro,bJxRn is continuous then the function (t, x) ---+ Z(t,x) is continuous on 
[0, b] X Rn, 

3) the linear subspace XI c X is such that 
(i) XI endowed with the norm II · llxr is a Banach space, 
(ii) if w : ( -oo, b] x [-r, r] ---+ B, 0 < b :S a, is a function such that 

W(o) E XI and wlro,bJx[-r,rJ is of class C 1 then W(t) E XI fort E [0, b], and there 
are constants L, L 0 E R+ independent of w such that 

(4) II W(t) llxr :S Lll w llf~!t] +Loll W(o) llxn t E [0, b], 

4) the linear subspace XI.L c XI is such that XI.L endowed with the 
norm ll·llxr.L is a Banach space and 

(i) if w : ( -oo, b] x [-r, r] ---+ B, 0 < b :S a, is a function such that 
W(o) E XI.L and WJ[o,b]x[-r,r] is of class C 1 and the derivatives OtW, OxW satisfy 
the Lipschitz condition with respect to (t, x) on (0, b] x [-r, rJ then W(t) E X1.L 

fort E {0, b], 
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(ii) there are constants Jt,f, !vf0 E R+ independent of w such that 

vVe will consider the spaces n = [0, a] X Rn X X' nl = [0, a] X Rn X XI 
and nl.L = [0, a] X Rn X XI.L· We adopt the following notations. If z : 
(- oo, b} x Rn --+ B, 0 < b ::=:; a, is a function such that Z![o,bJx Rn is continuous 
then we put 

llzll[o,t;x] =max{llz(T,s)ll: (T,s) E [O,t] x [x-r,x+r]}, 

and 

where (t, x) E [0, b] x Rn. Suppose additionally that the derivatives 

exist and are continuous on [0, b] x Rn. Then we write 

II z llf~!t;x] =II z ll[o,t;x] +max {ll8tz(T, s)ll : (T, s) E [0, t] X [x- r, x + r]} 

+max {ll8xz(T, s)ll: (T, s) E [0, t) x [x- r,x + r]}. 

For the above z, suppose that the derivatives 8tz, 8xz satisfy the Lipschitz 
condition with respect to (t, x) on [0, b] x ~- Then we put 

{ 
ll8tZ(T, s)- 8tz(f, s)ll _ _ } 

=sup IT-fl+lls-sll : (T,s),(T,s)E[O,t]x[x-r,x+r] 

{ 
ll8xz(T, s)- 8xz(f, s)ll - - 1 

+sup IT_ fl +lis_ sll : (T, s), (T, s) E [0, t) x [x- r, x + r] J 

and 
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If cp: ( -oo, 0] x Rn ___.Band C!J(o,x} EX for x E Rn then we write 

II cp ll(x,oo) =sup {II CfJ(O,x} llx : X ERn}. 

LEMMA 1. Suppose that Assumption H [X j is satisfied. 
I. If z : ( -oo, b] x Rn -+ B, 0 < b:::; a, is a function such that Z(o,x) E X 

for x E Rn and Zi[o,b]xRn is continuous then Z(t,x} E X for ( t, X) E (0, b] X Rn 
and 

(6) II Z(t,x} llx :S K II Z ll[o,t;x] + Ko II Z(o,x) llx, (t, x) E [0, b] X Rn. 

II. If z: ( -oo, b] x Rn -+ B, 0 < b:::; a, is a function such that Z(o,x) E XI 

for x ERn and Zi[o,b)xRn is of class C 1 then Z(t,x} E XI for (t,x) E (O,b] X Rn 
and 

(7) II Z(t,x} llxr :S L II Z llf~!t;x] + Lo II Z(o,x) llxn (t, x) E [0, b] X Rn. 

III. Suppose that z : ( -oo, b] x Rn ___. B, 0 < b :::; a, satisfies the condi­
tions 

(i) Z(o,x) E XI.L for X E Rn and Zi[o,b)xRn is of class C1, 
(ii) the derivatives 8tz, 8xz satisfy the Lipschitz condition with respect 

to (t, x) on [0, b] x Rn. 
Then Z(t,x} E XI.L for (t, x) E (0, b} X Rn and 

(8) II Z(t,x) llxi.L :S M II Z I If~ .. ~~]+ Mo II Z(o,x) llxi.L, (t, x) E [0, b} X Rn. 

PROOF. Estimates (6)- (8) follow from (3)- (5) for w given by w(T, s) = 
z(T, x + s), (T, s) E ( -oo, b] x [-r, r], with fixed x ERn. 

AssuMPTION H [ cp }. Suppose that cp : ( -oo, OJ x Rn ___. B, there exist 
the derivatives (aX! !..p1 ... l aXn ip) = 8xcp and 

1) CfJ(O,x} EX and ( Bx;CfJ )(o,x} EX, 1 :S i :S n, for X ERn, 
2) there is (bo, b1, b2) E R! such that II C!J(o,x} llx :S bo for x E Rn and 

where 1 :::; i:::; n, x, x E Rn, 
3) C!J(O,x} E X 1.L for x E Rn and there is (c0 , c1, c3) E R! such that 

II CfJ(O,x} llxr :::; Co, II CfJ(O,x} llxl.L :::; Cl, II CfJ(O,x}- CfJ(O,x} llxr :::; c211x- xll 

where x, x ERn, 
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4) there is (s0, s1 , s2 ) E R~ such that for x, x ERn we have 

REMARK 1. Suppose that the phase space X satisfies the condition: 
there is a constant C E R+ such that for each function w E X we have 
II w(O, x) II :::; Cll w llx, x E [-r, r]. Then conditions 1}, 2) of Assumption H 
[ cp} imply condition 4). 

We define some function spaces. Let cp : ( -oo, OJ x Rn _,. B be given 
and let 0 < c:::; a, d =(do, d1 , d2) E R!. We denote by C~:~[ d) the set of all 
functions z : ( -oo, c] x ~ _,. B such that 

(i) z(t,x) = cp(t,x) on (-oo,OJ x Rn, 
(ii) the derivatives 8tz, Bxz exist on [0, c] x Rn and 

liz (t, x) II :S do, II 8tz(t, x) II+ II Bxz(t, x) II :S d1 on [0, c] x Rn, 

(iii) for (t,x),(t,x) E [O,c] x Rn we have 

We will prove that under suitable assumptions on g, f and cp and for 
sufficiently small c with 0 < c :::; a, there exists a solution z E C~:~[ d] of 
problem (1), (2). 

LEMMA 2. Suppose that Assumptions H [X}, H [ cp} are satisfied and 
z E C~:~[d], 0 < c:::; a. Then · 

(9) II Z(t,x) llx :S ti:o, l'i:o = Kdo +Kobo, 

(10) II Z(t,x) llxr :S ;;;, ;;; = L(do + d1) +Loco, 

where (t, x) E [0, c} x Rn and 

(13) fl Z(t,x) - Z(t,x) llxr :::; [ L(dl + d2) + Loc2 J llx- xll, 
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(15) II Z(t,x)- Z(t,x) llx::; Kdl (It- ll + llx- xll) + Koblllx- xll, 

where t, [ E [0, c], x,x ERn. 
PROOF. We omit the simple proof of (9)- (12). We prove (13). Suppose 

that (t, x), (t, x) E [0, c] x ~and a function z: ( -oo, c] x Rn ~ B is defined 
by z(r, s) = z(r, s +X- x), (r, s) E ( -oo, c] X~. Then Z(t,x) = Z(t,x) and 

II Z(t,x)- Z(t,x) llxl = II (z- z)(t,x) llxl 

::; Lll z- z llf~!t;x] +Loll 'P(o,x)- 'P(o,x) llx1 ::; [ L(d1 + d2) + Loc2] llx- xll, 

which proves (13). In a similar way we prove (14) and (15). 
Now we give examples of phase spaces. 
EXAMPLE 1. Let X be the class of all functions w : D ~ B which are 

uniformly continuous and bounded on D. For wE X we write 

(16) llwllx =sup{ !Jw(t,x)ll: (t,x) ED}. 

Let X 1 C X denote the set of all w E X such that the derivatives OtW, Bxw 
exist and are uniformly continuous and bounded on D. For wE XI we write 

(17) llwllxr = llwllx+sup{ll8tw(t,x)ll: (t,x) ED} 

+sup{ll8xw(t,x)ll: (t,x) ED}. 

Let XI.L C XI be the class of all wE XI such that 

where 

(18) 

=sup { ll8tw(t, x)- 8tw(l, x)ll : } 
It- ti + llx- xll (t,x), (l,x) ED 

{ 
ll8xw(t,x)- Oxw(l,x)ll 

+sup : 
It - tl + llx - xll 

( t, x), ( t, x) E D } . 

Write 

(19) 
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Then Assumption H [X 1 is satisfied with all the constant equal 1. 
ExAMPLE 2. Let X be the class of all functions w : D ---* B such that 
(i} w is continuous and bounded on D, 
(ii) there exists the limit 

lim w(t, x) = w0 (x) uniformly with respect to x E [-r, r]. 
t-+-00 

Let II w llx be defined by {16). Denote by XI C X the set of all wE X such 
that 

(i) the derivatives OtW, OxW exist, they are continuous and bounded on 
D, 

(ii) there exist the limits 

lim Otw(t,x) = w1(x), lim &xw(t,x) = w2(x) 
t-+-00 t-+-00 

uniformly with respect to x E [-r, r]. For wE XI we define the norm II w llxr 
by (17}. 

Let XI.L C XI be the class of all wE XI which satisfy 

Lip [ OtW, OxW Jv < +oo. 

The norm in the space XI.L is defined by {19}. 
Then Assumption H [X 1 is satisfied with all the constant equal 1. 
EXAMPLE 3. Let 'Y : ( -oo, 0] ---* (0, oo) be a continuous function. As­

sume also that 'Y is nonincreasing on ( -;-oo, 0]. Let X be the space of contin­
uous functions w : D ---* B such that 

ll·m llw(t, x)ll = 0, [ ] 
() 

x E -r, r. 
t--oo 'Y t 

Put 

Denote by XI the class of all wE X such that the derivatives OtW, OxW exist, 
8tw E C(D, B), 8xw E C(D, En) and 

lim ll8tw(t, x)ll = 0 lim lloxw(t, x)ll _ 0 
t--oo 'Y(t) ' t--oo 'Y(t) - ' 

where x E [-r, r]. For wE XI we define the norm II w llx1 by 

II W llx1 =II w llx +sup { ll&t~~!)x)ll : (t,x) ED} 
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+sup { ll8x~g)x)ll : (t,x) ED}. 

Let XI.L C XI be the space of all wE XI which satisfy 

Lip [ 8tw, 8xw ]
7 

< +oo, 

where 

. { ll8tw(t,x)- 8tw(t,x)ll - _ } 
Lip [ 8tw, 8xw ]7 =sup 'Y(t) (it_ ti + llx _ xll) : (t, x ), (t, x) E D 

{ 
ll8xw(t,x)- 8xw(t,x)ll ( ) (- _) } 

+sup !'(t) (It- ti + llx- xll) : t,x' t,x ED . 

We define the norm in the space XI.L by 

II w llxi.L =II w llx1 +Lip [ 8tw, 8xw ]7 . 

Then Assumption H [X] is satisfied with 

1 
Ko = Lo = Mo = 1, K = L = M = -. 

'Y(O) 

Indeed, if w : ( -oo, b] x [-r, r] ---+ B, 0 < b ~ a, is a function such that 
W(o) EX and w lro,b]x[-r,] is continuous then 

{
llw(t+r,x)ll } 

llw<t)llx =sup 'Y(r) : ( r, x) ED 

1 { llwo(r,x)ll } 
~ llwllro,t] + 'Y(O) sup 'Y(r) : (r,x) ED , 

which proves ( 3). In a similar way we prove ( 4) and ( 5). 
ExAMPLE 4. Let p ;:::: 1 be fixed. Denote by X the class of all functions 

w : D ---+ B such that 
{i) w is continuous on { 0} x [-r, r}, and for x E [-r, r] we have 

j_0

00 

II w(r,x) liP dr < +oo, 

(ii) w(t, ·) : [-r, r]--+ B is continuous for every t E ( -oo, OJ. 
Write 

II w llx =sup { llw(t, x)ll: (t,x) E { 0} x [-r, rJ} 
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+sup { (j_'oo II w(r, x) [[P dr); : x E [-r, r[ } 

Let X 1 C X be the set of all wE X such that the derivatives 8tw, 8xw exist 
onD and 

(i) the functions OtW, Bxw are continuous on {0} x [-r, r] and for x E 
[ -r, r] we have 

[

0

00 

II OtW(T, x) liP dT < +oo, [
0

00 

ll8xw(T, x) liP dT < +oo, 

(ii) 8tw(t, ·) E C([-r, r], B) and Bxw(t, ·) E C([-r, r], En) for every 
t E ( -oo, 0). 

Write 

llwllx1 = llwllx +sup { ll8tw(t, x)ll : (t, x) E {0} x [-r,r]} 

+sup { ll8xw(t, x)ll : (t, x) E {0} x [-r, r]} 

+sup { (j_'oo IIO.w(r, x)[['dr) t : x E [-r, r)} 

Let Xr.L C Xr be the set of all w E X 1 such that Lip [ OtW, Bxw ][p] < +oo, 
where 

Lip [ OtW, Bxw )[p] =sup { f(h, x, x) : x, x E [-r, r), x f. x, h f. 0} 

+sup { f(h, x, x) : x, x E [-r, r), x f. x, h f. 0} 
and 

1 

f(h,x,x) = (J:oo ll8xW(T+ h,x)- OxW(T,x)IIPdT) p (ihl + Hx- xll)-1
• 
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We define the norm in the space X 1.L by 

1 

Then Assumption H [X J is satisfied with K = L = lvf = 1 + aP", K 0 = L0 = 
Mo = 1. 

vVe prove inequality (3). If U' : ( -oo, b) X [-r, r] __.,. B, 0 < b ::; a, is a 
function such that W(o) EX and w ![o,b]x[-r,r] is continuous then 

llw(t)llx =sup { l!w(t)(r,x)ll: (r,x) E {0} x [-r,r]} 

+sup { (L II W(t)(T, x) liP dr); : x E [-r, r] } 

:S llw[[[o,tj +sup { u:= II w(r,x) liP dr) * : X E [-r, r] } 

+sup { (J,' II w( r, x) liP dr); : x E [ -r, r] } 

1 

:S llw(o)llx + (1 + a"P)IIwll[o,t], t E [O,b), 

which proves (3). In a similar way we prove ( 4) and (5). 
EXAMPLE 5. Let X be the class of all functions w : D --* B such that 
(i) w is continuous on { 0} x [-r, r] and for every x E [-r, r] we have 

{ 
r-n ) 

V(x) =sup j II w(t,x) II dt: n EN~< +oo, 
-(n+l) J 

where N is the set of natural numbers, 
(ii} the function w(t, ·) : [-r, r] __.,. B is continuous for every t E 

( -oo, 0]. 

We define the norm in the space X by 

II w llx =sup { liw(t, x)ll : (t, x) E { 0} x [-r, r]}+sup { V(x) : x E [-r, r]}. 

Let X 1 C X be the set of all w E X such that 
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(i) the derivatives Dtw, Dxw exist on D and they are continuous on {0} x 
[-r, r], 

(ii) Dtw(t, ·) E C([-r, r], B), Dxw(t, ·) E C([-r, r], Bn) for every t E 
( -oo, 0] and 

F1(x) =sup { 1-n II Dtw(t,x) II dt : n EN 1J < oo, 
-(n+l) 

F1(x) =sup { 1-n II Dxw(t,x) II dt : n EN} < oo. 
-(n+l) 

For w E X I we define the norm 

llwllx1 = llwllx +sup { IIDtw(t, x)ll : (t, x) E {0} x [-r, r]} 

+sup { lloxw(t, x)ll : (t, x) E {0} x [-r, r]} 

+sup{ V1(x) : x E [-r, r]} +sup{ V2(x) : x E [-r, r] }. 

Let XI.L C XI be the set of all w E XI such that Lip [otw, Dxw]v < +oo 
where 

and 

=sup {1-n 8(t, x, x, h) dt: x, x, E [-r, r], x =I= x, h =I= 0, n EN} 
-(n+l) 

+sup {1-n S(t, x, x, h) dt: x, x E [-r, r], x =I= x, h =I= 0, n EN} 
-(n+l) 

e( _ h)= IIDtw(t + h, x)- Otw(t, x)ll 
t,x,x, lhl + llx- xll ' 

e-( _ h)= lloxw(t + h, x)- Dxw(t, x)ll 
t,x,x, lhl+llx-xll . 

We define the norm in the space XI.L by 

llwllxr.L = llwllx1 +Lip [8tw, Dxw]v. 

Then Assumption H [X] is satisfied with K = L = lvl = 1 +a, K0 = L 0 = 
Mo=2. 
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3. Functional integral equations. Let ()be the class of all functions 
'Y E C(R+, R+) which are nondecreasing and 'Y(O) = 0. For the matrix Y = 

[ Yi,j Ji,j=l, ... n we denote the norm 

We will assume that there are the Fnkhet derivatives of f2i , 1 .:::; i .:::; n, and 
f with respect to the functional variable. They are denoted by 8wf2i(t, x, w ), 
1 :S i :S n, 8wf(t,x,w) and 

awf2(t, x, w) = ( 8wf2l(t, x, w), ... 'awf2n(t, x, w)). 

The norms ofthe linear operators 8wf2i(t,x,w), 1 :Sis n, and 8wf(t,x,w) 
are denoted by ll8wf2i(t,x,w)ll and ll8wf(t,x,w). vVrite 

n 

ll8wf2(t, X, w)ll = L ll8wf2i(t, X, w)ll. 
i=l 

ASSUMPTION H [ f2]. Suppose the following: 
1) f2 = (f21 , . .. ,f2n) E C(n,Rn) is a function of the variables (t,x,w) and 

there is ao E ()such that II f2(t, x, w) II :S ao(q) for (t, x, w) En, llwllx :S q, 
2) the derivatives 

and the Frechet derivatives 

exist for ( t, x, w) E fh and there is a E () such that 

ll8xf2(t, X, W )II, ll8wf2(t, X, W )II :S a(q), llf2(t, X, W) - f2(i, X, W )II :S a(q) It- il, 

where (t,x,w) E Dh i E [O,a}, llwllx1 _:S q, 
3) there is f3 E () such that the terms 

where (t,x,w), (t,x,w) E nJ.L, llwllxf.L) llwllxl.L.:::; q, are bounded by 

f3(q) [It -ll + llx- xll + llw- wllx1 ]. 
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Suppose that r.p satisfies Assumption H [ r.p J and z E C~:~ [ d J. We consider 
the Cauchy problem 

(20) r/(r) = f2(T, 1J(T), Z(r,11(r))), 17(t) =X, 

where (t, x) E [0, a] x Rn and denote by g[zJ( ·, t, x) its solution. The function 
g[z] is the bicharacteristic of equation (1) corresponding to z. Write 

P[z](r, t, x) = ( T, g[z](r, t, x), Z(r,g[z](r,t,x)) ). 

vVe consider the system of integral functional equations which are generated 
by (1), (2): 

(21) z(t, x) = r.p(O, g[z](O, t, x)) +lot f(~, g[z](~, t, x), Z({,g[z](€,t,x))) d~, 

(22) z(t,x)=r.p(t,x) on (-oo,O)xRn, 

(23) g[z](r,t,x)=x+ 1r g(~,g[z](~,t,x),zc{,g[z](€,t,x)))~. 
REMARK 2. Note that equation (23} is equivalent to (20} and system 

(21}, {22} is obtained by integration of equation (1} along bicharacteristics. 

and 
LEMMA 3. Suppose that Assumptions H [X j and H [ f2 J are satisfied 

1} the functions r.p, r.j; : ( -oo, 0) x J?!t -+ B satisfy Assumption H [ <p }, 

2} c E (0, a] and z E C~:~[ d], z E C~:~[ d). 
Then the solutions g[z]( ·, t, x) and g[z]( ·, t, x) exist on [0, c), they are 

unique and 
(i) the derivatives 8tg[z], Bxg[z] exist and are continuous on [0, c) x [0, c} x 

Rn and 

(24) IIBtg[z](r,t,x) 11, IIBxg[z](r,t,x) II::; ro 
where fo = max { 1, ao(n;o)} exp[ c (1 + f\:)a(n;)] and Ko, f\:, n; are defined in 
Lemma 2, 

(ii) there are Po, Pl, f5o, jj1 E R+ such that for ( r, t, x ), ( T, l, x) E fO, c} x 
[0, c) x Rn we have 

(25) II 8tg[z](r, t,x)- atg[z](r, l,x) II::; Polt -ll + Plllx- xll 

and 

(26) ll8xg[zJ(r,t,x)- Bxg[z](r,l,x) II::; f5olt -ll + fJ1IIx- xll, 
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In the same way, using ( 29) we get 

II 8xg[z](r, t, x)- 8xg[z](r, f, x) II 5 f'(lt -ll + llx- xll) + roo:(K)(l + k)jt- tl 

+o:(K)(l +k) llr II 8xg[zJ(~, t,x)- 8xg[z](~, l,x) II d~ I, 
where f' = cr0 [ (1 + k)r + o:(K)( Kd2 + Kob2 )ro]. This shows that condi­
tion (26) is satisfied with 

Po= [ f+ roo:(K)(l + k) J expf c o:(K)(l + k) ], 

Pl = r exp[ co:(K)(l + k) }. 

Now we prove (27). It follows that 

IJg[z](r,t,x)- g[z](r,t,x) II 

5 o:(K) llr [llg[z](~, t, x) - g(z}(~, t, x)ll + llz({,g[z](~,t,x)}- Z({,g[z]({,t,x))llx] ~~· 

Since 

II Z({,g[z]({,t,z)) - Z({,g[z]({,t,x)) llx 

5 II Z({,g[z]({,t,z)) - Z({,g[z]({,t,x)) llx + II Z({,g[z]({,t,z)) - Z({,g(z]({,t,z)) llx 

s; (Kd1 +Kob1) llg[z](~,t,x)- g[z](~,t,x) II 

+KII z- z lho,t;R") + Koll cp- rjJ II(X,oo), 

then we get the integral inequality 

II g[z](r,t,x)- g[z](r,t,x) II 

5 o:(K)( 1 + Kd1 + Kob1) llr II g[z](~, t,x)- g[z](~, t,x) II d,(.l 
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+a(K) K 117 

II z- z ll[o,~;Rn] d~ I+ co:(K)Koll cp- 'P llcx,oo)· 

Let p = a(K) exp[ c o:(K)(l + Kd1 + I<0bl) ]. Now we obtain (27) from the 
Gronwall inequality. 

AssuMPTION H [ f]. Suppose the following: 
1) f E C(n, B) is a function of the variables (t, x, w) and 

II f(t,x, w) II:::; ao(q) for (t,x, w) En, llwllx:::; q, 

2) the derivatives 

8xf(t,x,w) = (8xJ(t,x,w), ... ,8xnf(t,x,w)) 

and the Fnkhet derivative 8wf(t,x,w) exist on 0.1 and 

II oxf(t, x, w) II, II owf(t, x, w) II ~ a(q), 

where (t, x, w) E 0~, llwllxr ~ q, and 

llf(t,x,w)-f(t,x,w)ll ::=;a(q)lt-il 

where (t, x, w) E 0.1! t E [0, a], llwllxt ~ q, 
3) the terms 

II 8xf(t, x, w) - oxf(i, x, w) II, II owf(t, x, w)- owf(i, x, w) II, 

where (t,x,w), (t,i,w) E nJ.L, llwllxr:L' llwllxr.L ~ q, are bounded by 

fJ(q) [It- il + llx- xll + llw- wllxr). 

REMARK 3. For simplicity of notation, we have assumed the same esti­
mates for {! and f and for their corresponding derivatives. We have assumed 
also the Lipschitz condition for the derivatives of {! and f with the same 
coefficient. 

For a function z E C~:~ [ d], 0 < c ~ a, we define a function F'P [ z} : 
(-oo,c] x Rn ~ B by 

F'P[z] ( t, x) = cp(O, g[z](O, t, x)) + kt f(f,, g[z](f,, t, x), Z({,g[z](e,t,x})) d1. 

on [O,c] x Rn, and F'P[z](t,x) = cp(t,x) on (-oo,O] x ~-
AssUMPTION H0 [ cp]. Suppose that the consistency condition 

n 

Otcp(O, x) + L tli(O, x, IP(O,x)) Ox;IP(O, x) = !(0, x, IP(O,x)) 
i=l 



346 Z.KAMONT 

is satisfied for X E Rn. 
LEMMA 4. Suppose that Assumptions H [X], H [ r.p ], H0 [ r.p ], H [ (} J 

and H [ f] are satisfied. Then there is c E (0, a] and d = (do, d1, d2) E R! 
such that 

(30) F. : ci.L[d]-+ ci.L[d] 'P <p.c <p.c 

and for z, z E C~:~[ d] we have 

(31) 

with 0 < q < 1. 
PROOF. It follows that 

8tF<p[z](t, x) = 8x(;?(0, g[z](O, t, x))8tg[z](O, t, x) 

+ f(t, x, Z(t,x)) +lot B(~, t, x) 8tg[z](~, t, x)~, 

and 

8xF...,[z](t, x) = 8xr.p(O, g(z](O, t, x))8xg[z](O, t, x) 

+lot B(~, t, x) 8xg[z](~, t, x) ~' 

where ( t, X) E (0, c] X nn. The function B is defined by 

B(~, t, x) = 8xf(P[z](~, t, x)) + 8wf(P[z]({, t, x)) * (8xz)((,g[z](e,t,x)) 

and 

Let c E (0, a], d = (d0, d11 d2) E R~ be such constants that 

ao(x:o) c +so ~ do, 

(32) 
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where 

p = ( f' + ij) exp[ ca(K)(l + ii:) ], ij = a(K) max {Kob1, 2fo(l + ii:) }. 

Then we have 

(33) II F.,[z](t,x) II~ so+ cao(Ko) ~do 

and 

(34) 

on [0, c] x Rn. It follows from Assumptions H [ g], H [!], H [ cp] and from 
Lemma 3 that 

ll8xcp(O, g[z](O, t, x)) 8tg[z](O, t, x)- Bxcp(O, g[z](O, l,x)) 8tg[z](O, l, x) II 

and 

II f(t, X, Z(t,x)) - f(t, X, Z(t,a:)) II 

and the terms 

II 8xf(P[z](~, t, x))- 8xf(P[z](~, l, x)) II, 

ll8wf(P[z](~, t, x))- Owf(P(z](~, l, x)) II 

can be estimated by f(lt -ll + llx - xll). Thus we have 

ll8tF.,[z](t, x) - 8tF.,[z](t, x) II ~ ( f' + s2r~ )(It- ll + llx- xll) 
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and 

where (t,x), (t,x) E [O,c] x Ir'. This together with (32) yields 

Estimates (33)-(35) imply (30). Now we prove (31 ). Suppose that z, z E 

c~.~[ dJ. It follows from Assumption H [!]and from Lemma 3 that 

II F'~'[z](t, x) - F'~'[z](t, x) II :5 s1ll g[z](O, t, x) - g[z(O, t, x) II 

+a(~) lot [II g[z](~, t, x)- g[z](~, t, x) II+ II Z({,g[z]({,t,x))- Z(e,g[z]({,t,x)) llx] d~. 

It follows from Lemma 2 that 

II Z({,g[z]({,t,x)) - Z({,g(z]({,t,x)) llx :5 Kll Z - z ll[o,{;Jln] 

+(Kd1 + Kobi)Ijg[z](~, t, x)- g[z(~, t, x) II· 

Then using (27) we have estimate (31) with 

q = cK [ SfP + cpa(~)(l + K d1 + Kob1) + o:(li)]. 

For sufficiently small c E (0, a] we have q < 1 and the Lemma is proved. 
REMARK 4. If we assume that so < do, 2s1 < d1, 2s2 < d2 then there 

is c E (0, a] sufficiently small and such that (do, db d2) satisfy {32}. Then, 
under suitable assumptions on X, j, (l assertion {30} holds true. 

4. Existence and uniqueness of solutions. Now we formulate main 
results of the paper. 

THEOREM 1. Suppose that Assumptions H {X}, H { cp }, H0 { cp }, H { (l }, 
H { f J are satisfied. Then there exist c E (0, aJ and d = ( d0, d11 d2) E R~ such 
that problem {1}, {2) has exactly one classical solution u E C~:~[ d]. 
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If cp : ( -oo, 0] x Rn __.... B satisfies Assumptions H [ cp 1 and H0 [ cp 1 and 
u E C~:~ [ d] is a solution of equation ( 1) with the initial condition z( t, x) = 
(j;(t, s) on ( -oo, 0] x Rn then there is AcE R+ such that fortE [0, c] we have 

(36) 

+sup { llcp(O, y)- 1{;(0, y) II : y E Rn}]. 

PROOF. It follows from Lemma 4 that there are c E (0, a] and dE R! 
such that the operator F"' satisfies the conditions: F"' : C~:~[ d} __.... C~:~[ d] 
and there is q E (0, 1) such that condition (31) holds. Then the operator 
F"' is a contraction on C~:~ [ d] and there is exactly one function u E C~:~ [ d] 
satisfying equation (21) with initial condition (22). Then we have the identity 

u(t, x) = cp(O, g[u](O, t, x)) +lot f( etfg[u](~, t, x), U(~,g[u](e,t,x))) d~ 

for ( t, x) E [0, c) x ~, which is equivalent to 

u(t, g[u](t, 0, y)) = cp(O, y) +lot J( ~' g[u](~, 0, y), uce,g[u](~,o,y))) d~ 

for ( t, y) E [0, c) x Rn. Differentiating the above identity with respect to t we 
get 

(37) 8tu(t, g[u}(t, 0, y))- f(t, g[u](t, 0, y), U(t,g[u)(t,O,y))) 

n 

= - L Bx; u(t, g[u](t, 0, y)) l?i( t, g[u}(t, 0, y), U(t,g[u](t,O,y)) ), 
i=l 

where ( t, y) E [0, c} x Rn. For each ( t, x) E [0, c] x ~ there is exactly one 
y E Rn such that g[u}(t, 0, y) = x. It follows from (37) that u satisfies equation 
(1) at (t,x) E [O,c] x Rn. It is clear that u satisfies initial condition (2). 

Now we prove relation (36). If u = F"'[ u] and u = F.p[ u 1 then 

II u(t, x)- 1l(t, x) II ~ II cp(O, g[u}(O, t, x))- cp(O, g[u](O, t, x)) II 

+II cp(O, g[u](O, t, x))- (f;(O, g[u](o, t, x)) II 

+o:(~) Jot [llg[u}(~, t, x)- g[u](~, t, x)ll + lluce.9[uJ(e,t,x))- uce,9[u](~,t,x))llx] ~-
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It follows from Lemma 2 that 

II U((,g[u]((,t,x))- U((,g[ii]((,t,x)) llx < (K d1 + Kobi) II g[u](~, t, x)- g[u](~, t, x) II 

+KII u- u llro,(,g(u]((,t,x)J + Koll c.p- <P llcx,oo} 

and 

II g[u](r, t, x)- g[u](r, t, x) II 

~ 8 [ K fot II u- ii llro,(;R") d~ + cKoll c.p - cp llcx,oo)] , 

where 0 ~ r ~ t ~ c, x E R!" and 8 = a(~~:) exp [ ca(~~:)(l + Kd1 + K0bi)]. 
Then we obtain the integral inequality 

II u - u llro,t;R"l ~ B fot II u - ii llro,(;RnJ d~ 

+A [sup {II c.p(O, y)- cp(O, y) Jl : Y ERn}+ II c.p- <P ll(x,oo}], t E [0, c], 

where 

A= max{l, Ao }, 

It follows from the Gronwall inequality that we have estimate (36) for Ac = 
A exp [ cB]. This completes the proof of Theorem 1. 

We wish to emphasize that our hereditary setting contains as particular 
cases some well known delay structures. Given the functions 

c.p: (-oo,O] X Rn--+ B, F: [O,a] X Rn X B X B--+ B, 

and 

'1/Jo: (O,a] X~--+ R, '1/J = ('l/;t, . .. ,'1/Jn): [O,a] X Rn--+ ~' 
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we consider the operators (!and f given by 

(38) g(t,x,w) = G(t,x,w(O,O),w(lj;0(t,x)- t,lj;(t,x)- x)) 

(39) f(t, x, w) = F( t, x, w(O, 0), w(lj;0(t, x)- t, lj;(t, x)- x) ). 

In this case (1) is equivalent to the differential equation with a deviated 
argument 

n 

( 40) Otz(t, x) + L Gi( t, x, z(t, x), z( 'l,bo(t, x ), lj;(t, x)) )Ox;z(t, x) 
i=l 

= F ( t, X, Z ( t, X), Z ( '/,b0 ( t, X) , '/,b ( t, X)) ) . 

We consider problem consisting of ( 40) and (2). Let n = [0, a] X Rn X B X B. 
AssuMPTION H [ G, F]. Suppose that the functions G and F of the 

variables ( t, x, p, q) satisfy the conditions: 
1) G and F are continuous and there is a E fJ such that 

IIF(t, x,p, q)ll, IIG(t, x,p, q)ll :::; a(r) 

for (t, x,p, q) En, IIPII, llqll :::; T, 

2) the derivatives oxG, oPG, oqG, oxF, oPF, oqF exist on nand there is 
A E R+ such that 

where Q = (t, x,p, q) E 0 and G, F satisfy the Lipschitz condition with 
respect to t with the constant A on n, 

3) there is L E R+ such that the derivatives 

oxG, oPG, oqG, oxF, oPF, oqF 

satisfy the Lipschitz condition with respect to (t, x,p, q) on n with the con­
stant L. 

ASSUMPTION H [ 1/Jo, 'l,b ]. Suppose that the functions ?,b0 and 'l,b satisfy 
the conditions 

1) 'l,bo E C([O,a] x Rn,R), 'l,b E C([O,a] x Rn,Rn) and 

'l,bo(t,x):::; t, -r S 'l,b(t,x)- x:::; r on [O,a] x Rn, 
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2) the derivatives 

Ox'l/Jo, Ox'l/J = [ Oxi '1/Ji L,j==l, ... ,n 

exist on [0, a] x Rn and there is Co E R+ such that 

and 'lj;0 , '1/J satisfy the Lipschitz condition with respect tot with the constant 
Co, 

3) the derivatives ox'l/Jo, ox'l/J satisfy the Lipschitz condition with respect 
to ( t, x) with a constant L0 . 

The main theorem reduces to the following one. 
THEOREM 2. Suppose that Assumptions H [X], H [ r.p ], H0 [ r.p ], H 

[G, F j, H [ '1/Jo, '1/J J are satisfied. Then there are c E (0, a], d = (d0 , d1 , dr) E 
R! and a function u E C~:~[ d] such that u is a solution of (40}, (2}. 

PROOF. It follows from Assumptions H [ G, F] and H [ '1/Jo, '1/J] that the 
operators f2 and f given by (38), (39) satisfy Assumptions H [ f2] and H [ !). 
Hence, the assertion follows as an immediate consequence of Theorem 1. 

REMARK 5. If we consider the functions f2 and f given by 

(41) Q(t, x, w) = G( t: x, w(O, 0), k w(r, s) drds ), 

(42) f(t,x,w) = F(t,x,w(O,O), k w(r,s)drds), 

then equation ( 1) reduces to the differential integral equation 

(43) Otz(t, x) + t, Gi( t, x, z(t, x), k w(t + r, x + s) dr ds) Ox;z(t, x) 

= F( t, x, z(t, x), k w(t + r, x + s) dr ds ). 

Suppose that Assumptions H [X], H [ r.p ], H0 [ r.p J and H {G, F J are satisfied. 
Then there are c E (0, a], d = (d0 , d1 , d2) E R! and a function u E C~:~[d] 
such that u is a solution of (43}, (2). 
Indeed, the operators f2 and f given by (41), (42} satisfy Assumptions H [f2 J 
and H [ f]. The assertion follows as a consequence of Theorem 1. 

REMARK 6. It is important in Assumptions H [ f2 j, H [ f J that we have 
assumed that the derivatives Oxf2, Owf2, oxf, owf exit on the space 0 1 and that 
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these derivatives satisfy the local Lipschitz condition on some special function 
spaces. 

Let us consider simplest assumptions on (J and f. Suppose that 
(A1) the derivatives &xf, &wf exist and are bounded on nand f satisfies 

the Lipschitz condition with respect to t on n, 
(B f) there is L E R+ such that the terms 

ii&xf(t, x, w)- &xf(t, x, w)ii, iiowf(t, x, w)- 8wf(t, x, w)ii, 

are bounded by L(it - fl + llx - xi! + llw - wllx) on n and that suitable 
assumptions (Ae), (Be) are satisfied. 

Of course, our results are true under the above stronger assumptions. 
Now we show that our formulation of Assumptions H [ (J }, H [ f J is impor­
tant. We show that there is a class of equations (1} satisfying the original 
assumptions but not satisfying (AJ), (BJ), (Ae), (Be)· 

Let X, x~, XI.L be the spaces given in Example 1. Consider equation 
(40) and the operators (J, f given by {38}, {39}. From now we consider the 
function f only. It follows that 

&xJ(t,x, w) = Ox;F( Q) + 8qF( Q) OtW( Q) Ox;'I/Jo(t,x) 

n 

+&qF( Q) L aXj w( Q) (Ox; '1/Jj(t, x)- {jij)' 
j=l 

where Dij is the Kronecker symbol and . 

Q = (t,x,w(O,O),w('lj;0(t,x)-t,'lj;(t,x)-x) ), Q = ('1j;0 (t,x)-t,'lj;(t,x)-x). 

Similar considerations apply to (J. 

Suppose that Assumptions H {G, F j and H ['1/Jo, '1/J j are satisfied. We see 
at once that Assumptions H [ (J }, H [ f j are satisfied and that (J, f given by 
{38}, {39} does not satisfy conditions (AJ), (B,), (Ae), (Be)· 

Let a > 0, h = (h1, ... , hn) E Rn and r = (r1 , ... , rn) E Rf. be given 
where hi > 0 for 1 :::; i :::; n. Suppose that K E N, 0 :::; K :::; n, is fixed. For 
each y = (y1, ... , Yn) ERn we write y = (y', y") where y' = (y1, ... , yK:}, y" = 
(YK:+l' ... , Yn)· We have y' = y if K =nand y" = y if K = 0. We define the 
sets 

E = [O,a] x [-h', h') x (-h", h"], B = (-oo,O] x [O,r') x [-r",O). 

Let c = (c1 , ... , cn) = h +rand 

E0 = ( -oo, 0) x [-h', c1 x [-c", h"], 
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80E = ( (0, a] x [-h', c'] x [-c", h"]) \ E, E* = E0 U E U 80E. 

Suppose that z: E*---+ Rand (t,x) E [O,a] x [-h, h] are fixed. We define 
the function Z(t,x) : B ---+ R as follows Z(t,x)( T, 8) = z( t + T, x + 8), ( T, 8) E B. 
Let X be the linear space consisting of functions mapping the set D into B. 
Suppose that 

(} = ( (}1, ... , f2n ) : E X X ---+ Rn, f : E X X ---+ B, cp : Eo U 8oE ---+ B, 

are given functions. We consider the quasilinear equation ( 1) with the initial 
boundary condition 

(44) z(t, x) = cp(t, x) on E0 U 8oE. 

The results of the paper can be extended on the mixed problem ( 1), ( 44). 
The axioms on the phase space X are the fillowing. 

ASSUMPTION fi [X]. Suppose that 
(i) conditions 1 ), 3), 4) of Assumption H [X] is satisfied, 
(ii) if z: E* ---+ B is a function such that Z(o,x) EX for x E [-h, h] and z 

is continuous on [O,a] x [-h',c'] x [-c'',h"] then the function (t,x)---+ Z(t,x) 
is continuous on [O,a] x [-h,h]. 

The above assumption (ii) is an adaptation of condition 2) of Assumption 
H [X J for mixed problems. 

Put E = (Eo U 80E) n E where E is the closure of E and 

AssuMPTION ii [ (}, f] Suppose that Assumptions H [ 11 J and H [ f] 
are satisfied with the above given 0, QI, QI.L and for every c > 0 there is 
fi(.:-) ........ () "'""'""' +"h ... + v c;.,.. j ........- V I.:H.&.'\..,...U. \JLU::t.ll 

f2i(t,x,w) 2: b(c) for 1:::; i:::; /'i, and f2i(t,x,w):::; -b(c) for /'i,+ 1:::; i:::; n 

where (t, x, w) E Ex X and llwllx :::; c. 
We formulate assumptions on cp. 
ASSUMPTION fi [ cp J. Suppose that cp : Eo U 80E ---+ B, there exist the 

derivatives ( Ox1 cp, ... , Oxn cp) = OxCfJ and 
1) CfJ(t,x) EX and (8xiCfJ)(t,x) EX, 1 < i:::; n, for (t,x) E E, 
2) there is (bo, b1, b2) E R! such that II CfJ(t,x) llx :::; bo for (t,x) E E and 
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II (ax,<P)(t,x) - (ax;<P)(t,x) llx ::::; b2llx- xll, 
where 1 ::::; i::::; n, (t, x), (t, x) E £, 

- 3 3) <P(t,x) E X1.L for (t, x) E E and there is (co, c1, c3) E R+ such that 

II <P(t,x) llx1 ::::; Co, II <P(t,x) llxr.L ::::; C1, 

II <P(t,x)- <P(t,x) llxr ::::; Czllx- xll, 
where (t, x), (t, x) E E, 

4) there is (so, s1 , s2 ) E R! such that 

II <P(t, x) II ::::; so, ll8x<P(t, x) II ::::; s1, 

II ax<P(t, x)- ax<P(t, x) II ::::; szllx- xll, 
where (t, x), (t, x) E E, 

5) the consistency condition 
n 

at<P(t,x) + Lt!i(t,X,<P(t,x))ax;<P(t,x) = f(t,X,<P(t,x)) 
i=l 

is satisfied for (t, x) E E. 
THEOREM 3. If Assumptions fi [X 1, fi [ g, f 1 and fi [ <P 1 are satisfied 

then there exists exactly one classical solution of (1), (44). The solution is 
local with respect to t and it depends continuously of <P· 

The proof of the above Theorem .is similar to the proof of Theorem 1. 
We omit details. 
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HOPF BIFURCATIONS AT INFINITY, 
GENERATED BY BOUNDED NONLINEAR TERMS * 

A. KRASNOSEL'SKH AND D. RACHINSKH 

Abstract. In the paper we present new sufficient conditions for existence of large­
amplitude periodic solutions for autonomous equations with a parameter. In contrast to 
the usual situations, the linear degenerate part of the equation does not depend on the 
parameter. Therefore the existence of periodic solutions is determined by the asymptotic 
behavior of bounded nonlinear terms at infinity. We present a new simple method to 
reduce the original degenerate problem to topologically nondegenerate one. This infinite­
dimensional problem is studied by degree theory methods. 
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periodic solutions, vector field rotation, degree product formula 

1. Introduction. Consider the differential equation 1 

(1) L (!, >.) x = M (:t' >.) F(x, >.). 

Here L(p, >.)and M(p, >.)are coprime polynomials of degrees f and m, f > m, 
with real coefficients, which depend on the scalar parameter>. E A= (a, b). 
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Russian Academy of Sciences, 19 Bolshoi Karetny Lane, 101447 Moscow, Russia. E-mails: 
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1 A definition of solution for equation (1) is given in most books on control theory, see, 
e.g., [2] and [8]. If M(p, .>..) = 1, then (1) is a usual quasilinear ODE. 
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The continuous nonlinearity F(x, >.) is uniformly bounded. We shall use 
bounded nonlinearities of various types: functional nonlinearities f(x(t), >.), 
where f(x, >.) : 1R x A --* 1R is a continuous function, nonlinearities f(x(t -
h),>.) with the delay h > 0, hysteresis nonlinearities. We study sufficient 
conditions for existence of large-amplitude periodic solutions x(t) of equa­
tion (1). 

DEFINITION 1. The number ).0 is called 2 a Hopf bifurcation point at 
infinity (shortly, a Hopf bifurcation point) for equation ( 1) with the frequency 
w0 if for every c > 0 there is a parameter value ).e E (>.0 - c, >.0 +c) such 
that equation (1) with ). = ).e has a periodic solution xe(t) of a period Te 
satisfying ITe- 21r /wol < c with the amplitude max lxe(t)J > c-1

. 

In other words, >.0 is a Hopf bifurcation point with the frequency w0 if 
for arbitrarily close to ).0 values of the parameter ). equation ( 1) has peri­
odic solutions of arbitrarily large amplitudes with periods arbitrarily close 
to 21r /wo. 

The following result is formulated in [3]. Suppose the polynomial L(p, >.) 
has a pair of simple conjugate roots CJ(>.) ± w(>.)i depending continuously on 
>., where CJ(>. 0 ) = 0 and the function CJ(>.) takes values of both sign in every 
neighborhood of the point >.0 • Suppose L(kw(>.0 )i, >. 0) =/:. 0 for k = 0, 2, 3, ... 
Then >.0 is a Hopf bifurcation point for equation ( 1) with the frequency w ( ).0 ). 

These sufficient conditions for bifurcation point existence use only the 
information on the linear part of ( 1). The result holds for equation ( 1) 
with any continuous bounded nonlinearity, moreover, it holds for unbounded 
sublinear3 nonlinearities. So the nonlinear part of the equation is of no 
importance under the assumptions above. 

In this paper we study equations of the form (1), where the linear part is 
independent of a parameter and is degenerate, i.e., L(p, >.) = L(p), M(p, >.) = 
M(p) and the polynomial L(p) has a pair of pure imaginary roots ±w0i. For 
such equations, the asymptotic behavior of nonlinear terms at infinity is a 
criterion for ).0 to be a Hopf bifurcation point. 

The paper is organized as follows. Theorem 1 of Section 2 gives sufficient 
conditions for existence of a Hopf bifurcation point for equations with the 
delayed term. These conditions are formulated in a simpler form for equations 
without delays in Theorem 2. 

In Section 3 equations with the stop hysteresis nonlinearity ([5]) are 
studied. The stop is used for simplicity, similar results are valid for equations 

2 See [3]. 
3 The nonlinearity F(x, ..\) : E x A -+ E1 is sublinear if IIF(x, ..\)IIE1 = o(llxfiE) as 

llxiiE-+ oo. 
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with scalar hysteresis nonlinearities of various types: the Prandtl-Ishlinskii 
nonlinearities, the Preisach nonlinearities, etc. 

In Section 4 we give some remarks on the results obtained. The proofs 
(Section 5) are based on a new method to reduce the original degenerate 
problem to a topologically nondegenerate one. The method can also be used 
to study some classical bifurcation problems with nondegenerate linear part 
depending on a parameter, in particular to prove the result from [3] above. 

2. Equations with delay. Consider the differential equation 

(2) L (:t) x = J\1 (:t) [f(x(t),>-.) + g(x(t- h),>-.)] 

with the real coprime polynomials L(p), !vf(p) of degrees 1!. > m. The func­
tions f(x, >-.) : IR x A -l- IR and g(x, >-.) : IR x A -l- IR are continuous with 
respect to the set of their arguments and uniformly bounded. 

(3) 

Let L(±w0i) = 0. Define 

,B~f lim Sm[L(wi)M(-wi)J, 
w-wo 1Re[L(wi)1\!1( -wi)] 

clef a= arctg,B. 

The limit in (3) (finite or infinite) always exists. To be definite, we put 
a = 1r /2 if it is infinite (for example, a = 1r /2 if the denominator in (3) is 
the identical zero). 

Denote by !odd and 9odd the odd cm;nponents 

fodd(x, >-.) = (f(x, >-.) - f( -x, >-.))/2, 9odd(x, >-.) = (g(x, >-.)- g( -x, >-.))/2 

of the functions f and g. Set 

( 4) 

r7r r7r/2 
W(~, >-.) = Jo sin t !(~sin t, >-.) dt = 4 Jo sin t !odd(~ sin t, >-.) dt, 

r7r 17r/2 
f(~, >-.) = Jo sin t g(~ sin t, >-.) dt = 4 

0 
sin t 9odd(~ sin t, >-.) dt 

and 

<!>(~,a,>-.)= sinaw(~, >-.)+sin( a+ w0h)f(~, >-.). 

Functions ( 4) are rather usual for the control theory, they are called describ­
ing functions (see, e.g., [7]). 
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THEOREM 1. Let the following assumptions hold: 
1. The number w0 is a root of odd multiplicity K for the polynomial L( wi). 
2. The relation L(kw0i) f 0 holds for every k = 0, 2, 3, 4, ... 
3. In every neighborhood of the point Ao there are points AI and A2 such 

that 

(5) lim sup <I>(~, a, AI) < 0, 
~-+oo 

where a is given by (3). 
Then the value Ao is a Hopf bifurcation point for equation (2) with the 

frequency wo. 
Consider the application of Theorem 1 to the problem without the de­

layed term. Let equation (2) have the form 

(6) L (!) x = M (!) f(x,A). 

THEOREM 2. Let the following conditions hold: 
1. The number w0 is a root for both polynomials ~[L(wi)M( -wi)J and 

L(wi) of the same odd multiplicity K. 
2. The relation L(kw0i) f 0 holds for every k = 0, 2, 3, 4, ... 
3. For every A there exists the limit 

(7) 'If;( A) clef lim w(~, A). 
~-+oo 

4. Equation 'If;( A) = 0 has a solution Ao such that the function 'If;( A) takes 
the values of both sign in every neighborhood of the point Ao. 

Then the value Ao is a Hopf bifurcation point for equation (6) with the 
frequency wo. 

Under assumption 1 of Theorem 2 the polynomial ~[L( wi)M( -wi)J is 
nonzero, so at least one of the polynomials L(p) and M(p) is not even. Under 
this assumption the limit in (3) is distinct from zero, hence a f 0. Since 
<I>(~, a, A)= sin a w(~, A), conditions 3 and 4 of Theorem 2 imply condition 3 
of Theorem 1 and Theorem 2 follows from Theorem 1. 

If~[L(wi)M(-wi)] = 0, then a= 0 and hence <I>(~,a,A) = 0. There­
fore condition 3 of Theorem 1 is not satisfied for equation (6). In fact, it is 
an exceptional case. One can show that the identity ~[L(wi)M( -wi)] = 0 
holds iff both polynomials L(p) and M(p) are even. Furthermore, if L(p) = 
L( -p), M(p) = M( -p), where the polynomial L(p) satisfies conditions 1 
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and 2 of Theorem 1, then equation 

L (:t) x = Nl (~) f(x) 

with any bounded continuous function f ( x) has the continuum of periodic 
cycles x(t; ~), ~ 2: ~0 such that llx(t; ~)lie-+ oo and T(~)-+ 21r fwo as~-+ oo, 
where T(O is the period of the cycle x(t; ~) and~ is a parameter. Therefore 
the identity Sm[L( wi)M( -wi)] = 0 implies that all the values A E A are 
Hop£ bifurcation points for equation (6) with the frequency w0• 

A simple example of equation (6) that can be studied with Theorem 2 
is X

111 + x" + x' + x = f(x, >-). 
Sufficient conditions for existence of limit (7) are discussed in Section 4. 

3. System with hysteresis. Here we consider the equation 

(8) L (:t) x = M (~) (a(>-)U(J1o)x + f(x,>-)) 

with a continuous bounded function f(x, >-) : JR. x A -+ lR and a continuous 
function a(>-). By U(Mo) we denote the stop nonlinearity with the initial state 
J1o E [ -1, 1]. The definition of the stop is given shortly below; for more details 
and for the general mathematical theory of hysteresis operators, see [5]. 

For a given initial state J1o and for every continuous input x(t), t 2: to the 
operator M(t) = U(J1o)x(t) determines the state of the stop at each moment 
t 2: t0 . The continuous function p(t), t 2: t0 with the values in [-1, 1] is at 
the same time the output of the stop. For monotone continuous inputs, 

U(J1o)x(t) = {min { 1, Mo + x(t) - x(t0 )} if x(t) increases, 
max{ -1, J1o + x(t)- x(t0 )} if x(t) decreases. 

For each piecewise monotone continuous input the output is calculated 
with the help of the semigroup identity U(U(11(t0 ))x(tl))x(t) = U(11(t0 ))x(t), 
t 2: t 1 2: t0 . To define the outputs for any continuous inputs, the operator 
U(J1o) is extended by continuity in the space C[t0 , t 1] of continuous functions 
from the dense set of piecewise monotone inputs x(t) to the whole space. 
The correctness of this procedure is proved in [5]. 

Figure 1 shows the trajectories of the point {x(t), U(J1)x(t)} in the plane 
{ x, U x}. The point is always in the closed band I U xI ~ 1, which is the join of 
the two boundary horizontal lines U x = ± 1 and continual number of slanting 
lines Ux = x- 8 with x E (8- 1,8 + 1) (where 8 E lR is a parameter). If 
the initial state J1 is not ±1 the point {x(t), U(p)x(t)} goes along a slanting 
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Ux 

1 

0 X 

-1 

Fig. 1. Stop nonlinearity 

line: upwards right if x(t) increases and downwards left if x(t) decreases. As 
the point reaches the horizontal line, it switches to it and goes to the right 
along the line U x = 1 if x( t) increases and to the left along the line U x = -1 
if x(t) decreases. The point switches again to a slanting line as soon as the 
input x(t) switches from increasing to decreasing or conversely. 

The stop U(!to)x is a continuous operator from [-1, 1] x C[t0 , t 1] to 
C[t0 , t1]. Moreover, this operator is Lipschitz continuous in both arguments 
{to, x(t) and monotone in the natural sense. 

In the following, the initial state Mo of the stop is not fixed. A solution 
x(t) of equation (8) is periodic if both the function x(t) and the variable 
state ~t(t) = U(~to)x(t) of the stop are periodic with the same period. 

Define the number a and the function "Ill(~,,\) by formulas (3) and (4). 
THEOREM 3. Let assumptions 1 and 2 of Theorem 1 hold and limit (7) 

exist for each ,\. Suppose the equation 

0 = 7/J(,\) sin a- 4a(,\) cos a def ¢(,\) 

has a solution ).0 such that the function¢(,\) takes the values of both sign in 
every neighborhood of the point ).0 . Then ,\0 is a Hopf bifurcation point for 
equation (8) with the frequency w0 . 
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4. Remarks. 

4.1. Equations with variable linear part. Consider the equation 

L ( :t, A) x = M ( :t, A) [f(x(t), A)+ g(x(t- h), A)], 

where the polynomial L(p, A) ha..'l the same imaginary roots ±w0i of the 
same odd multiplicity K for all parameter values and L(kw0 i, A) =I= 0 for 
every k = 0, 2, 3 ... and every A. If the nonlinearity satisfies the conditions 
of Theorem 1, then the conclusion of the theorem holds for this equation. 
The same is true for Theorem 2 applied to the equation 

L (:t'A) x = M (~,A) f(x,A). 

These facts follow from the proof of Theorem 1 (see Section 5) without any 
additional argument. 

Values (3) may depend on A in this case. 

4.2. Computation of limit (7). For applications of Theorems 2 and 3 
it is important to know if limit (7) exists for a given function f(x, A). Con­
sider some sufficient conditions for the limit existence for nonlinearities with­
out parameters (for nonlinearities depending on the parameter we suppose 
these conditions for every parameter value). 

Let f(x) = j 1(x) + j 2 (x) + f 3 (x), where the function fl(x) satisfies the 
Landesman-Lazer conditions, i.e., the finite limits 

lim fl ( x) = j+, 
x-++oo 

exist; the function h(x) is even; the primitive of the function !J(x) is sub­
linear: 

(9) 

Then limit (7) exists and 

1
211" 

lim sin t f(~ sin t) dt = 2(!+- f-). 
~-= 0 

For example, equality (9) holds for all periodic and almost periodic func­
tions h(x) with zero average value, for the functions sinx\ sin Ji'Xi, for 
every function h(x) vanishing at infinity, etc. The sum of the functions 
satisfying (9) also satisfies (9). Equality (9) is not valid for the function 
sin ln(l + lxl). 
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4.3. More general result. Natural analogs of Theorems 1 - 3 hold 
for equations with several delays, for example 

L (!) x = M (!) t, J.(x(t- h,),A), 

and for equations containing both delayed and hysteresis terms. 
Consider the more complicated than (2) equation 

(10) L ( :t) x = fl.f (!) f(x(t), x(t- h),>.) 

with a bounded continuous function f(x, y, >.) : lR x lR x A -+ R Set 

(11) <!>0 ((, a, w, >.)clef -12

7r cos(t +a) f(( sin t, ( sin(t - wh), >.) dt, 

where a is given by (3). 
We say that the function f(x, y, >.) satisfies the proper Lipschitz condi­

tion in x if 

with ((r) -+ 0 as r -+ oo. Similarly, f(x, y, >.) satisfies the proper Lipschitz 
condition in y if 

lf(x, Y1, >.)- f(x, Y2, >.)J :S ((Jxl + IY1l + IY2i)IY1- Y2l, >. E A 

with ( ( r) vanishing at infinity. The following result can be proved by the 
slightly modified method of the proof of Theorem 1. 

THEOREM 4. Let assumptions 1 and 2 of Theorem 1 hold. Let 

f(x, y, >.) = f1 (x, y, >.) + h(x, y, >.), 

where the function f 1 satisfies the proper Lipschitz condition in x and the 
function f 2 satisfies the proper Lipschitz condition in y. Suppose in every 
neighborhood of the point >.0 there are points >.1 and >.2 such that for each 
R > 0 the relations 

lim sup sup <I>o((, a, w, >. 1) < 0, 
~-oo lw-woi:S~-1/K 

lim inf inf <I>o((, a, w, >.2) > 0 
~-+oo lw-woi:S~-1/K 

hold, where <I> 0 is function ( 11) and K is the multiplicity of the root w0 of 
the polynomial L(wi). Then >.0 is a Hopf bifurcation point for equation (10) 
with the frequency w0 . 
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5. Proofs. 

5.1. Change of variables. We look for periodic solutions of equa­
tions (2) and (8) of the periods 2r. jw with unknown w close to Wo. Let us 
change the time scaling and replace equations (2) and (8) with the equations 

(12) L ( w :t) x = M ( w :t) [f(x(t), >.) + g(x(t- wh), >.)] 

and 

(13) L ( w !) x = M ( w :t) (a(>.)U(J-Lo)x(t) + f(x(t),>.)). 

Evidently, x(wt) is a 2n-jw-periodic solution of equation (2) (respectively, 
(8)) iff x(t) is a 2r.-periodic solution of equation (12) (respectively, (13)). 

By assumption, the polynomial L( wp) of the variable p has the roots 
±i for w = w0 ; furthermore, the relations M(±wi) f. 0 and L(±kwi) f. 0, 
k = 0, 2, 3, ... hold for w = w0 , so they hold also for every w from a small 
neighborhood f2 of the point Wo. 

We show that each of equations (12) and (13) has 27r-periodic solutions 
of the form 

(14) x ( t) = ( sin t + z ( t), 

where z(t) is orthogonal in L2 = £2 ~0, 27r) to the functions sin t and cost. 
More precisely, for every sufficiently large positive ( there are the numbers 
w and >. and the function z(t) such that (14) is a solution of the equation 
considered. Since ( is arbitrarily large, so is the amplitude of (14). 

Let us stress the following. 
First, the shift of time generates the continuum {x(t + cp), cp E JR} of 

periodic solutions for every given nonconstant periodic solution x(t) of any 
autonomous equation. That is, together with solution (14) equations (12) 
and (13) have solutions of the form ,; sin(t + cp) + z(t + cp) with any cp. 
By fixing the phase cp, we choose a unique solution from the continuum 
x( t + cp) (namely, it is the solution orthogonal to cost with the positive 
Fourier coefficient ( by sin t). 

Secondly, the original problem depends on the parameter >.. Unknown 
solutions of the problem are functions x(t} = (sin wt + TJ cos wt + z( wt) of 
unknown period 27r / w with unknown Fourier coefficients (, TJ and unknown 
component z(· ). Thus, originally we have a problem with the parameter .-\ 
and the four unknowns(, T}, w, z(·); each solution of the problem is included 
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in the continuum of solutions with shifted time. Now the Fourier coefficient 
~ is considered as a parameter, the phase <pis fixed (that is, we put TJ = 0), 
and the unknowns are w, .A, z(t). This choice of a parameter and unknowns 
leads to a problem that can be studied without much difficulty by standard 
topological methods. 

5.2. Topological lemma. For the sequel, we need the following lemma 
on solution existence for a system of two scalar equations and an equation 
in the Banach space E. 

LEMMA 1. Consider the system 

(15) Bt(w,.A,z)=O, B 2(w,.A,z)=O, z=B3(w,.A,z) 

with z E E and scalar w E n, A E A, where the operators Bt' B2 : n X A X E -+ 

JR. are continuous and the operator B3 : n x A x E -+ E is completely 
continuous with respect to the set of their arguments. Suppose the operator 
B 3 maps its domain into a bounded set Z c E. Suppose there are segments 
[wt, w2] C n, [.At, .A2) C A such that Bt(Wt, .A, z) · Bt(w2, .A, z) < 0 for every 
.A E [.At, .A2], z E Z and B2( w, At, z) · B2(w, .A2, z) < 0 for every w E [wt, w2], 
z E Z. Then system (15) has a solution wE [wi, w2], .A E [.AI, .A2], z E Z. 

The proof of Lemma 1 is based on the product formula for vector field 
rotations (see [4], [6]). Under the assumptions of Lemma 1 the rotation /'I of 
the infinite-dimensional vector field z- B3 (w, .A, z) with fixed w, .A on every 
sphere {II z II E = p} of a sufficiently large radius p equals 1. The rotation ')'2 

of the two-dimensional vector field {BI(w,.A,z), B 2(w,.A,z)} with fixed z on 
the boundary of the rectangular T = { w E (WI, w2), .A E (.AI, .A 2)} is either 1 
or -1. The rotation /'o of the vector field 

{Bt(w, .A, z), B 2(w, .A, z), z- B 3(w, .A, z)} 

on the boundary of the domain T x {llz!IE < p} in the space R x R x IE 
equals 1'1/'2 , i.e., I'Yol = 1. Hence there exists a solution of system (15) in the 
this domain. 

Now we replace equations (12) and (13) with 21r-periodic boundary con­
ditions with systems of form (15). For both equations (12) and (13) sys­
tem (15) can be constructed in a common way, consider equation (12). We 
multiply the equation by sin t and integrate over the segment [0, 21r] to obtain 
the first of equalities (15). Multiplying the equation by cost and integrat­
ing over the segment [0, 21r], we obtain the second scalar equality of (15) 
(the details are in the next subsections). The equation in a Banach space is 
constructed as follows. 
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Denote byE c C the space of functions z(t) : [0, 2?T]-+ JR., satisfying 

z(O) = z(2?T), 12

11" sin t z(t) dt = 12

11" cost z(t) dt = 0 

and set l!zi!E = llzllc· Consider the linear operator A(w) that maps each 
function u(t) E E to a unique 2?T-periodic solution x(t) = A(w)u(t) E E of 
the equation 

(16) L ( w :t) x(t) = !v! ( w !) u(t). 

The operator A(w) existence follows from assumption 2 of Theorem 1. The 
operator A( w) maps E to En C1

. It is a completely continuous operator in 
the space E and a bounded operator from E to C1. Moreover, the norms of 
the operators A(w) are uniformly bounded for all w E n and the operator 
A(w)u: n x E-+ E is completely continuous with respect to the set of its 
arguments w, u. 

Denote by C0 c C the space of functions u(t) : [0, 21r] -+ JR., satisfying 
u(O) = u(27r) with the norm llullco = llullc· Set 

Pu(t) e - cos(t- s) u(s) ds. d f 112
71" 

?T 0 

The operators P and I- P project the space C0 on the plane TI = {~sin t + 
TJ cost} and on the subspace E of the space C0 respectively. Let us extend the 
operator A(w) to the whole space C0 by the formula A(w)u = A(w)(I -P)u. 
Each of the projectors P and I- P commutes with the extended operator 
A(w). 

Now the last equation of system (15) can be written as 

z =A( w )[!(~sin t + z(t), ;\) + g(~ sin twh + z(twh), .-\)]; 

here and henceforth tu = t- u fort ~ u and tu = t- u + 21r fort < u. By 
construction, A( w )[!(~sin t+ z(t), ;\) + g(~ sin twh + z(twh), .-\)] is a completely 
continuous operator from n X A X E to E for every fixed ~. 

The system constructed can be easily transformed to the system satis­
fying the conditions of Lemma 1. The main point of the proof of Theorem 
1 is to determine the segments [wb w2] and [.-\b .-\2] for every large~· In the 
proof of Theorem 3 we also determine the initial stop state p,0 such that 
p,(t) = U(p,0 )x(t) is a 21r-periodic function for the 21r-periodic solution x(t) 
of (13). 
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5.3. Auxiliary lemmas. Let e(t) be a Lipschitz continuous function. 
LEMMA 2. For every c > 0 the equality 

lim sup I {2

7re(t) (f(x(t), A) - !(~sin t, A) )dtl = 0 
~-oo zEC1 , llzllct :::;c, ~EA } 0 

holds, where x(t) =~sin t + z(t). 
LEMMA 3. For every c > 0 the equality 

(18) lim sup I r7r e(t) (U(J.Lo)x(t)- sign(cost))dtl = 0 
~-oo zEC1 ,11zll0 t:::;c,poE(-1,1] lo 

holds, where x(t) =~sin t + z(t). 
Below we use Lemmas 2 and 3 with e(t) =sin t and e(t) =cost. 
Lemma 3 is proved in [1]. Let us prove Lemma 2. 
Take an arbitrary c > 0. We need to show that the supremum in (17) is 

smaller than c for all sufficiently large~' i.e., 

(19) 112

7r e(t) (f(x(t),A)- f(~sint,A)) dtl < c 

for every A E A and z E C1, !lzllct 5 c. For this purpose, consider the 
partition Uli of the segment [0, 21r], where 11 = [0, 1r /2 - 6], l2 = [1r /2 -
8,1rj2 + 8], 13 = [?r/2 + 6,3?r/2- 8], 14 = [37r/2- 6,3?r/2 + 6], and 15 = 
[37r /2 + 8, 21r] with a small 6 > 0. The join 12 U 14 contains the set { t E 

(0, 21r] : cost= 0}. Choose 8 > 0 so that 

(20) 2 sup lf(x, A)l1
2

u
14 

le(t)l dt < c/2 

and fix this 8 up to the end of the proof. From 

it follows that 

inf. I cost!= sin6 > 0 
tEftU/aU/:; 

inf l~cost+z'(t)l > 1/2~sin6 
tEitUlaU/:; 

whenever { is sufficiently large, hence the functions ~ sin t and ~ sin t + z( t) 
are strictly monotone in some neighborhood ii of the segment Ii, i = 1, 3, 5. 
Therefore the formula~ sin r = ~sin t+ z( t), r E ii defines a strictly monotone 
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function T = r((, t) of the argument t E Ii for every large~· Let t = t(~, r) 
be the inverse function. Consider the integrals 

:h = 1; e(t)f(~ sin t + z(t), ,\) dt, i = 1,3,5. 

Changing the variable, we obtain 

J
T(~,b;) 

:h = e(t(~, r)) f(~ sin r, ,\) t~(~, r) dr, 
r(~,a;) 

where ai, bi are the ends of the segment h By construction, t(~, r) -+ T and 
t~ ( ~, T) -+ 1 as ~ -+ oo uniformly in T. So, the Lipschitz continuity of e( ·) 
implies e(t(~, r))-+ e(r). Also, 

r(~, ai) -+ ai, r(~, bi) -+ bi. 

Hence, 

:]; - [' e(r)/({sinr,>.)dr ~ 0, 

Together with (20) this proves (19). 

i = 1,3,5. 

• 
5.4. Scalar equations. Let us multiply equation (16) by sin t (resp., 

cost) and integrate over [0, 2n]. The following lemma writes explicitly there­
sulting scalar equalities, which allows to write explicitly the scalar equations 
of system (15). 

LEMMA 4. Suppose the functior-s x(t) = ~sin t + z(t), z E E, and 
u(t) E C0 satisfy (16). Then 

L(wi) ('tr . 
(21) n3?e .M(wi)~= Jo smtu(t)dt, 

L(wi) 12
7r 

1r SID M( wi) ~ = 
0 

cost u(t) dt. 

Proof. It follows from (16) that 

L ( w :t) (~sint) = M ( w !) Pu(t). 

Equivalently, 

1r 3?e[L( wi)]~ sin t + 1r Sm[L( wi)]~ cost= 
J27r 

(!Re[M(wi)]cost-Sm(M(wi)]sint)J
0 

cossu(s)ds + 
J27r 

(!Re[M( wi)] sin t + Sm[M( wi)] cos t)J
0 

sins u(s)ds, 
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that is 

r1f r1f 
?r3?e[L(wi)]~ =-~[M(wi)J Jo cos8 u(8)d8+3?e[A1(wi)] Jo sin8u(8)d8, 

{21f {21f 
1r ~[L(wi)]~ = 3?e[M(wi)] Jo cos 8 u(8) d8+~[M(wi)] Jo sin 8 u(8) d8. 

Multiplying the first of these equalities by 3?e[M(wi)], the second one by 
~[M(wi)] and summing, we obtain the first of equations (21). Summing 
the first of the equalities multiplied by - ~[M(wi)] with the second one 
multiplied by 3?e[M(wi)], we obtain the second of equations (21). II 

5.5. Proof of Theorem 1. Consider the system 

1r 3?e ~~~1) ~ = 12
1f sin t [!(~sin t+z(t), .\)+g(~ sin twh +z(twh), .\)] dt, 

(22) L(wi) r1f 
7r ~ M(wi) ~ = Jo cost[!(~ sin t+z(t), .\)+g(~ sin twh +z(twh), .\)] dt, 

z = A( w )[!(~sin t + z(t), .\) + g(~ sin twh + z(twh), .\)]. 

It follows from the definition of the operator A( w) and from Lemma 4 that 
the function x(t) =~sin wt+z( wt) is a 21r /w-periodic solution of equation (2) 
whenever the triple { w, )., z} En x AxE is a solution of system (22) for some 
~ > 0. Therefore to prove Theorem 1 it is sufficient to show that system (22) 
has a solution { w, )., z} with w and ). arbitrarily close to w0 and ).0 for every 
sufficiently large~- Let us transform (22) to the equivalent system satisfying 
the conditions of Lemma 1. 

Rewrite the first two equations of (22) as 

3?e[L(wi)M( -wi)J ( 21f 
(23) 7r IM(wi)l2 ~ = Jo [sin tf(x(t), .\) + sin(t+wh)g(x(t), .\)] dt 

and 

~[L(wi)M( wi)J r'lr 
(24) 7r IM( wi)l2 ~ = Jo [cos tf(x(t), .\)+cos(t+wh)g(x(t), .\)} dt, 

where x( t) = ~sin t + z( t). Consider separately the following two situations: 
first, limit (3) is either infinite or zero; second, limit (3) is a finite number 
(3 # 0. 
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Suppose j3 = 0 (the case (3 = oo is similar and we do not consider it 
here). Then o: = 0 and 

(25) 

It follows from 

that 

(26) 

211" 
<P(~,O,A) = sin(w0 h) 1 sintg(~sint,A)dt. 

r ~[L(wi)M( -wi)] _ 
0 w!_.~o 3?e[L(wi)M( -wi)] -

~[L(wi)M(-wi)] = (w- wo)K+NQ1(w), 

3?e[L(wi)M(-wi)] = (w- wo)K Q2(w), 

where Q2 (w0 ) =I= 0 and either Q1 ( w0 ) =I= 0 or Q1 ( w) is the identical zero; N 
is a positive integer; K is the multiplicity of the root w0 i of the polynomial 
L(p). Now equations (23), (24) can be written as 

211" 

(27) 1r(w- wo)K 1 i~~~~2 - jfsin tf(x(t), A)+sin(t+wh)g(x(t), A)]dt= 0, 

0 
211" 

(28) 7r(w-wo)K+NI~~~~2 -j[cos tf(x(t), A)+cos(t+wh)g(x(t), A)]dt=O. 
0 

Let us express the term ( w- w0)K from equation (27) and substitute in (28) 
to obtain 

(29) ( w - w0 )N ~~~: ~ 1
2

11" (sin t f(x(t), A)+ sin(t + wh)g(x(t), A)) dt-

1211" (cost f(x(t), A)+ cos(t + wh)g(x(t), A)) dt = 0. 

We use (27) and (29) as the scalar equations of system (15). The equation 
in a Banach space is the last equation of (22). 

Since sup lf(x, A)l +sup lg(x, A)l < oo and the norms of the operators 
A( w) : C0 -+ C 1 are uniformly bounded, it follows that the nonlinear opera­
tor 

A( w )[!(~sin t + z(t), A)+ g(~ sin twh + z(twh), A)] 
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maps its domain 0 x A x E onto a bounded subset Z of C 1, so Z is also 
bounded in E. Thus, the last equation of (22) satisfies the conditions of 
Lemma 1. The conditions concerning the scalar equations should be verified 
for z E Z. We take z from the fixed ball {llzllci :S c} containing Z. 

Set 

(30) W1 = w1(0 defwo- R11K~- 1/K, W2 = w2(~) defw0 + R11K~- 1/K, 

where 

IM(wi)l2 
R = 4 !~~ IQ

2
(w)l [sup if(x, A) I+ sup lg(x, A) I]. 

Since the number K is odd, the sign of the left-hand side of equation (27) is 
( -1 )i sign Q2 ( w0) for w = wi whenever ~ is sufficiently large and A E A. 

Take any pair of parameter values satisfying the condition 3 of Theorem 1 
as the numbers A1, A2 used in Lemma 1. It follows from Lemma 2 that all the 
terms in (29) except (25) vanish as~---+ oo and w---+ w0 , hence sign <I>(~, 0, A) 
is the sign of the left-hand side of equation (29). By condition 3, the left­
hand side of (29) is negative for A = A1 and positive for A = A2 whenever 
wE [w1(0, w2 (~)] with large enough~' which completes the proof for f3 = 0. 

Now suppose f3 i= 0. This case is similar to the case above. The only 
difference is that N = 0 and Q i ( w0 ) =f. 0 for both j = 1, 2 in formulas ( 26). 
Therefore equality (29) can be written in the form 

cos a [ ~:~:~ - /3] 127r[sin t f(x(t), A)+ sin(t + wh) g(x(t), A)J dt-

12
7r[cos(t +a) f(x(t), A)+ cos(t + wh +a) g(x(t), A)] dt = 0, 

and the sign of the left-hand side coincides with sign <I>(~, a, A). The further 
arguments are exactly like above. B 

5.6. Proof of Theorem 3. The proof follows the line of the proof of 
Theorem 1. The analog of system (22) for equation (8) is 

(31) 

27r 

1r ~~~~])~=]sin t(a(A)U(J..to)[~ sin t+z(t)]+ f(~ sin t+z(t), A))dt, 
0 
27r 

1rSm ~~:il) ~=]cos t(a(A)U(J..to)[~ sin t+z(t)]+ f(~si~ t+z(t), A))dt, 
0 

z = A(w)(a(A)U(J..to)[{sint + z(t)] + f(~sint + z(t),A)). 
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The same transformation as used in the proof of Theorem 1 brings system 
(31) to the form where the term ( w - w0 )K ~ is principal for the first scalar 
equation, and the principal term of the second scalar equation is 

(7r 
- Jo cos(t +a) ( a(A)U(J.Lo) [~sin t + z(t)] + f(~ sin t + z(t), A)) dt. 

By Lemmas 2 and 3, this expression goes to ¢(A) = 1/'(A) sin a-4a(A) cos a as 
~-+ oo. Thus, by Lemma 1 system (31) has a solution { w(J.Lo), A(J.Lo), z(t; J.Lo)} 
for each initial stop state J.Lo E [ -1, 1] whenever ~ > 0 is sufficiently large. 

It remains to determine a value J.Lo such that the function J.L(t; J.Lo) = 
U(~to)(~ sin t + z(t; J.Lo)) is 21r-periodic, i.e., J.L(27r; J.Lo) = J.Loi then x(t; J.Lo) = 
~sint + z(t;J.Lo) is a 21r-periodic solution of equation (13) for A= A(J.Lo), 
w = w(J.Lo) and hence x( wt; J.Lo) is a 21r /w-periodic solution of equation (8). 

It follows from the semigroup property of the operator U(J.L) that 

J.L(t; J.Lo) = U(J.L(77r/4; J.Lo))x(t; J.Lo), 

Since z(t; J.Lo) E Z, where the set Z is bounded in Cl, the relations 

x' (t; J.Lo) = ~cost+ z' (t; J.Lo) 2: 0, 77r /4 5:. t 5:. 21r, J.Lo E [ -1, 1], 

and 

(32) x(21r; J.Lo)- x(77r /4; J.Lo) 2: 2, J.Lo E [ -1, 1], 

hold for any large ~. That is, the input x(t; J.Lo) increases on the segment 
77r/2 5:_ t::; 21r, hence 

J.L(t; J.Lo) = min{1, J.L(77r /2; J.Lo) + x(t; p.0)- x(77r /2; J.Lo)}, 

and (32) implies that J.L(27r; J.Lo) = 1 for every J.Lo E [-1, 1]. 
x( wt; J.Lo) is a 21r /w-solution of equation (8) iff p.0 = 1. 
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Abstract. The main aim of this paper is to investigate the exponential stability of 
stochastic functional differential equations with Markovian switching. The Razumikhin 
argument and the generalized Ito formula will play an important role in this paper. Ap­
plying our new results to several important types of equations e.g. stochastic differential 
delay equations and stochastic differential equations, both with Markovian switching, we 
obtain a number of very useful results. Several examples are also given for illustration. 

Key Words. Lyapunov exponent, Razumikhin argument, Brownian motion, Markov 
chain, Poisson random measure. 
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1. Introduction. Stochastic modelling has come to play an important 
role in many branches of science and industry. An area of particular inter­
est has been the automatic control of stochastic systems, with consequent 
emphasis being placed on the analysis of stability in stochastic models ( cf. 
Arnold [1], Friedman [3}, Has'minskii [5] and Mao [10}). The stability of 
stochastic functional differential equations has been studied by many authors 
and we here mention Kolmanovskii & Myshkis [7], Kolmanovskii & Nosov [8], 
Ladde & Lakshmikantham [9], Mao [11] and Mohammed [14] among others. 
However, there is little work on the stability of stochastic functional differen­
tial equations with Markovian switching although there are quite a number 
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of papers on the stability of stochastic differential equations with Markovian 
switching e.g. Basak et al. [2], Ghosh et al. [4J and Skorohod [17J. 

In this paper we consider a stochastic functional differential equation 
with Markovian switching of the form 

(1) dx(t) = f(xh t, r(t))dt + g(xt> t, r(t))dw(t), 

where r(t) is a Markov chain taking values on S = {1, 2, · · ·, N}. This 
equation can be regarded as the result of the following N equations 

(2) dx(t) = f(xt, t, i)dt + g(xt, t, i)dw(t), 1 :s; i :s; N 

switching from one to the others according to the movement of the Markov 
chain. In section 2 we shall quickly establish the existence-and-unique the­
orem for the solution of the equation and cite the generalized Ito formula. 
In section 3 we shall apply the Razumikhin argument ( cf. Razumikhin [15, 
16]) to investigate the exponential stability of equation (3). The general 
results obtained in this section will then be applied to stochastic differen­
tial delay equations and stochastic differential equations in sections 4 and 5, 
respectively. Finally we give three examples for illustration in section 6. 

2. Stochastic Functional Differential Equations with Marko­
vian Switching. Throughout this paper, unless otherwise specified, we let 
(n, F, {Ft}t2::0 , P) be a complete probability space with a filtration {Fth2::o 
satisfying the usual conditions (i.e. it is right continuous and F 0 contains 
all P-null sets). Let w(t) = (w1(t), · · ·, wm(t)f be an m-dimensional Brow­
nian motion defined on the probability space. Let T > 0 and C( [ -r, OJ; J?:l') 
denote the family of continuous functions cp from [ -T, OJ to Rn with the 
norm II'PII = supr<O<o lcp(O)I, where I · I is the Euclidean norm in Rn. If 
A is a vector or mat~ix, its transpose is denoted by AT. If A is a matrix, 
its trace norm is denoted by IAI = Jtrace(AT A) while its operator norm 
is denoted by IIAII = sup{jAxj : lxl = 1} (without any confusion with 
II'PII). Denote by C}-

0
([-r, OJ; Rn) the family of all bounded, F 0-measurable, 

C([-r, OJ; Rn)-valued random variables. For p > 0 and t ~ 0, denote by 
L)=.J[-r, OJ; Rn) the family of all Frmeasurable C([-r, OJ; J?:!')-valued ran­
dom variables</>= {¢>(8): -T :s; 8 :s; 0} such that SUP-r<O<oEI¢>(8)1P < oo. 

Let r(t), t 2: 0, be a right-continuous Markov chain on the probability 
space taking values in a finite state space S = {1, 2, · · ·, N} with generator 
r = ('Yij)NxN given by 

P{r(t + ~) = jjr(t) = i} = { 'Yij~ + o(~) ~f ~ # ~' 
1 + 'Yii~ + o( ~) 1f z = J, 
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where .6. > 0. Here {ij ~ 0 is the transition rate from i to j if i =f:. j while 

"'Iii = - L tij· 
j:f.i 

\Ve assume that the Markov chain r( ·) is independent of the Brownian motion 
w(· ). It is known that almost all sample paths of r(t) are constant except for 
a finite number of simple jumps in any finite subinterval of R+ ( := [0, oo)). 
\Ve stress that almost all sample paths of r(t) are right continuous. It is 
also very useful to recall that the Markov chain r(t) can be represented as 
a stochastic integral with respect to a Poisson random measure. Indeed, let 
uij, i =f:. j, be consecutive (with respect to the lexicographic ordering on 
S x S), left closed and right open intervals of the real line each having length 
Aij. Define a function 

by 

{ 
J. i if y E .6. · · TJ(i, y) = 0- lJl 

otherwise. 

Then 

dr(t) = k TJ(r(t-:- ), y)v(dt, dy), 

where v( dt, dy) is a Poisson random measure with intensity dt x Jl( dy), Jl( ·) 
being the Lebesgue measure on R. For more information about this repre­
sentation please see Skorohod [17]. 

Consider an n-dimensional stochastic functional differential equation with 
Markovian switching of the form 

(3) dx(t) = f(xt, t, r(t))dt + g(xt, t, r(t))dw(t) 

on t ~ 0 with initial data x0 = €. Here € E C}
0
([-T, 0}; _Rn) and Xt = {x(t + 

fJ) : -T :::; (} :::; 0} which is regarded as a C([-T, 0}; Rn)-valued stochastic 
process. Moreover, 

For the existence and uniqueness of the solution we impose a hypothesis: 
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(Hl) Both f and g satisfy the local Lipschitz condition and the linear growth 
condition. That is, for each k = 1, 2, · · ·, there is an hk > 0 such 
that 

for all t ~ 0, i E Sand those I.{JI,I.{J2 E C([-r,O];R:'-) with llr.p1ll V 

II r.p2ll :::; k, and there is moreover an h > 0 such that 

lf(r.p,t,i)l + lg(r.p,t,i)l:::; h(1 + llr.pll) 

for all r.p E C([-r, OJ; Rn), t ~ 0 and i E 5. 

THEOREM 1. Under hypothesis {Hl}, equation {3} has a unique contin­
uous solution x(t) on t ~ -T. Moreover, for every p > 0, 

(4) E[ sup lx(s)IP] < oo on t ~ 0. 
-Ts;s::;t 

Proof. It is known (cf. Skorohod [17]) that there is a sequence {rk}k~o 
of stopping times such that 0 = To < r1 < · · · < Tk ---> oo and r(t) is constant 
on every interval [rk, rk+I), i.e. for every k 2: 0 

We first consider equation (3) on t E [0, ri] which becomes 

(5) dx(t) = f(xt, t, r(O))dt + g(xt, t, r(O))dw(t) 

with initial data x0 = ~· By the existence-and-unique theorem of stochastic 
functional differential equations (cf. Mao [11, 12] or Mohammed [14]) we 
know equation (5) has a unique continuous solution on [-r, r1J. vVe next 
consider equation (3) on t E [r1 , r2J which becomes 

(6) 

with initial data x'T1 given by the solution of equation (5). Again we know 
equation (6) has a unique continuous solution on [r1 - r, r2]. Repeating this 
procedure we see that equation ( (3) has a unique solution x(t) on t ~ -T. 

To show (4) we note from Holder's inequality that 
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So we only need to prove ( 4) in the case of p .2: 2. For any t E [0, T], 
by Holder's inequality, Theorem 1.7.2 of Mao [12] and the linear growth 
condition we can show that 

where 

Consequently 

E[ sup lx(s)IP] ::; EII~IIP + E[ sup lx(s)IP] 
-r~s~t O~s~t 

::; (3p-l + l)EII~IIP + CT +Clot E[_:~~u lx(s)!P]du. 

An application of the Gronwall inequality implies 

and the required assertion ( 4) follows. The proof is complete. 
Let C2,1(J{'l- x [-T, oo) x S; R+) denote the family of all nonnegative 

functions V(x, t, i) on [{'1- x [-T, oo) x S which are continuously twice differ­
entiable in x and once differentiable in t. If V E C2,1(Rn x [-T, oo) x S; R+), 
define an operator .CV from C([-T, 0]; [{'~-) x R+ x S toR by 

(7) .CV(<p, t, i) Vi:(<p(O), t, i) + Vx('f?(O), t, i)f(<p, t, i) 

+ ~trace[gT(<p, t, i)Vxx('f?(O), t, i)g(<p, t, i)] 

N 

+ L'YijV(<p(O),t,j) 
j=l 

where 

tr( .) = 8V(x, t, i) u ( .) = (8V(x, t, i) ... 8V(x, t, i)) Vt X 1 f, 'l 8 1 Vx X, f, 1, Q 1 1 
8 

l 

t X1 Xn 

TT ( ") _ (o2
V(x, t, i)) Vxxx,t,z- £:~. 8 . 
VXi Xj nxn 
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For the convenience of the reader we cite the generalized Ito formula ( cf. 
Skorohod [17]): If v E C2·1(Rn X [-7, oo) X S; R+), then 

(8) dV(x(t), t, r(t)) 

- .CV(xt, t, r(t))dt + Vx(x(t), t, r(t))g(xt, t, r(t))dw(t) 

+ hJV(x(t), t, r(t) + 1J(r(t), y))- V(x(t), t, r(t))] ji(dt, dy), 

where 17(·) has been defined before while ji(dt, dy) = v(dt, dy)- JL(dy) is the 
centered Poisson measure. Integrating both sides from t to t + h and then 
taking expectation we obtain the following useful formula 

(9) EV(x(t +h), t + h, r(t +h)) 

1
t+h 

= EV(x(t), t, r(t)) + E t .CV(xs, s, r(s))ds. 

3. Exponential Stability. From now on we shall discuss the exponen­
tial stability of equation (3). We shall always fix the Markov chain r(t) but 
let the initial data~ vary in C}

0
([-7, 0]; Rn). The solution of equation (3) is 

denoted by x(t; ~)in this paper. For the purpose of stability we may assume, 
without loss of generality, that f(O, t, i) = 0 and g(O, t, i) = 0. So equation 
(3) admits a trivial solution x(t; 0) = 0. 

Let us now establish a Razumikhin-type theorem on the pth moment 
exponential stability for the stochastic functional differential equation. 

THEOREM 2. Let (Hi) hold. Let A,p, cb c2 be all positive numbers and 
q > 1. Assume that there exists a function V(x, t, i) E C2•1(Rn X [-7, oo) X 

S; R+) such that 

for all (x,t,i) ERn x [-7,oo) x S, 

and also for all t :2: 0 

(11) E[l~~~1r.CV(¢,t,i)] ~ --\E[1~~1r V(¢(0),t,i)] 

provided¢= { ¢(8) : -7 ~ 8 ~ 0} E L~t ([-7, 0]; R"") satisfying 

(12) E[ min V(¢(8), t + 8, i)] < qE[ max V(¢(0), t, i)] 
I9SN 19SN 

for all-7 ~ 8 ~ 0. Then for all~ E C}
0
([-7, OJ; Rn) 

(13) Elx(t;~)IP ~ c2 EII~IIPe--yt on t :2: 0, 
cl 
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where 1 = min {,\,log( q) / T}. In other words, the trivial solution of equa­
tion {3) is pth moment exponentially stable and the pth moment Lyapunov 
exponent is not greater than -1. 

Proof. Fix the initial data ~ E C}
0 

([ -T, OJ; Rn) arbitrarily and write 
x(t; 0 = x(t) simply. Extend r(t) to [-T, 0) by setting r(t) = r(O). Recalling 
the facts that x(t) is continuous, E(sup_r<s<t ix(s)IP) < oo for all t ~ 0 and 
r(t) is right continuous, we see easily that Ell(x(t), t, r(t)) is right continuous 
on t ~ -T. Let c E (0, 1) be arbitrary and set ;y = 1- c. Define 

U(t) = sup [e'Y(t+O) EV(x(t + 0), t + 0, r(t + 0))] 
-T~8~0 

We claim that 

fort~ 0. 

(14) 
. U(t +h) - U(t) 

D+U(t) := hmsup ::::; 0 
h-->0+ t 

for all t ~ 0. 

Note that for each t ~ 0 (fixed for the moment), either 
U(t) > e'YtEV(x(t),t,r(t)) or U(t) = e'YtEV(x(t),t,r(t)). In the case of 
former, if follows from the right continuity of EV(x(·),·,r(·)) that for all 
h > 0 sufficiently small 

U(t) > e'Y(t+h) EV(x(t +h), t + h, r(t +h)), 

hence 

U(t +h) ::::; U(t) and D+U(t) ::::; 0. 

In the other case, i.e. U(t) = e'Yt EV(x(t), t, r(t)), we have 

e'Y(t+B) EV(x(t + 0), t + 0, r(t + 0)) ::::; e'Yt EV(x(t)), t, r(t)) 

for all -T ::::; 0 ::::; 0. So 

(15) EV(x(t + 0), t + 0, r(t + 0)) ::::; e-;ye EV(x(t), t, r(t)) 

::::; e"fr EV(x(t), t, r(t)) 

for all -T::::; 0::::; 0. Note that either EV(x(t), t, r(t)) = 0 
or EV(x(t), t, r(t)) > 0. In the former case, (15) and (10) yield that x(t + 
0) = 0 a.s. for all -T ::::; 0 ::::; 0. Recalling the fact that f(O, t, i) = 0 and 
g(O, t, i) = 0, one sees that x(t +h) = 0 a.s. for all h > 0 hence U(t +h) = 0 
and D+U(t) = 0. On the other hand, in the case of EV(x(t), t, r(t)) > 0, 
(15) implies 

EV(x(t +B), t + 0, r(t + 0)) < qEV(x(t), t, r(t)) 
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for all -7 ~ (} ~ 0, since ei-r < q. Consequently 

E [min V(x(t + 8), t + 8, i)] < qE [max V(x(t), t, i)J 
l::;i$N 1$i$N 

for all -7 ~ (} ~ 0. In other words, Xt E L:;,.t([-7,0];Rn) satisfying (12). 
Thus, by condition (11), we have 

E[l~\~~.CV(xt, t, i)] ~ -AEL~~~ V(x(t), t, i)], 
which implies 

(16) E.CV(xt, t, r(t)) ~ -,\EV(x(t), t, r(t)). 

This gives 

;yEV(x(t), t, r(t)) + E.CV(xt, t, r(t)) ~ -(,\- ;y)EV(x(t), t, r(t)) < 0. 

By the right continuity of the processes involved we hence see that for all 
h > 0 sufficiently small 

;yEV(x(s), s, r(s)) + E.CV(xs, s, r(s)) ~ 0 if t ~ s ~ t +h. 

By Ito's formula, we can then derive that 

ei(t+h) EV(x(t +h), t + h, r(t +h)) - eit EV(x(t), t, r(t)) 

r+h =it e1s[;yEV(x(s),s,r(s))+E.CV(x8 ,s,r(s))]ds ~0. 

That is 

eiCt+h) EV(x(t +h), t + h, r(t +h)) ~ eit EV(x(t), t, r(t)). 

So it must hold that U(t +h) = U(t) for all h > 0 sufficiently small, and 
hence D+U(t) = 0. Inequality (14) has therefore been proved. It now follows 
from (14) immediately that 

U(t) ~ U(O) for all t ~ 0. 

By the definition of U(t) and condition (10) one sees 

E!x(t)!P ~ c2 EII~We--rt = c2 Ell~!IPe-b'-e)t. 
cl cl 
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Since c is arbitrary, the required inequality (13) must hold. The proof is 
complete. 

The following theorem gives the sufficient conditions for the almost sure 
exponential stability. 

THEOREM 3. Let p;::: 1 and assume that there is a constant K > 0 such 
that for all¢ E Lj:.t([-T, 0]; _Rn), t;::: 0 and i E S, 

(17) E[lf(¢,t,i)IP+ jg(¢,t,i)jPJ ~ K sup Ej¢(8)IP. 
-r::;o::;o 

Then ( 13) implies that 

(18) limsup~loglx(t;~)l ~ _2. 
t-+00 t p 

a.s. 

for all~ E C}
0
([-T, OJ; Rn). In other words, under condition {17), the pth 

moment exponential stability implies the almost sure exponential stability. 

Proof Fix any~ E C}
0
([-T, 0]; Rn) and again write x(t; ~) = x(t). For 

each integer k;::: 2, 

(19) Ellxkr!IP = E( sup jx((k- 1)7 + h)IP) 
O:Sh:Sr 

< 3p-l (Eix((k- 1)T)jP + E [ rkr lf(xs, s, r(s))jds]p 
J(k-l)r 

+ E [ sup I r<k-l)r+h g(xs, s, r( s) )dw( s) lp]). 
O:Sh:Sr }(k-l)r 

By Holder's inequality, 

(20) [1 kr ]p 1t+r 
E lf(xs, s, r(s))jds ~ rP- 1 Elf(xs, s, r(s))jPds. 

(k-l)r t 

But by (17) and (13) we can derive that 

Elf(xs, s, r(s))IP ~ L Elf(xs, s, i)jP 
i:Si:SN 

~ NK sup Ejx(s + B)IP ~ NKc2 Ell~We-1(s-r). 
-r::;o::;o C1 

Substituting this into (20) yields 

(21) E[ rkT lf(xs, s, r(s))lds]p ~ NK C2Tp Ell~llpe-(k-2)T"Y. 
J(k-l)r C1 
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On the other hand, by the Burkholder-Davis-Gundy inequality (cf. Karatzas 
& Shreve [6] or Mao [11]), we have that 

(22) J:=Ef sup 1 f(k-l)T+h g(x
8
,s,r(s))dw(s)iP] 

lo::;_h:S_T J(k-l)T 

(lkT )p/2 
< CpE lg(xs, s, r(s)Wds 

(k-l)T 

< CpE[( sup lg(xs, s, r(s))i) fkT ig(x8 , s, r(s))ids]P
12

, 
(k-l)T:S_s:S_kT J(k-l)T 

where Cp is a positive constant dependent of p only. Let c E (0, 1/3P-1KN) 
be sufficiently small for 

(23) 
3P-1KNc -'yT -----<e . 

1- 3P-1KNc 

Using the elementary inequality labl :::; ca2 +b2 /4c we derive from (3.13) that 

(24) J < cE( sup lg(xs, s, r(s))IP) 
(k-l)T:S_s:S_kT 

+ 
04~ E [ {kT ig(xs, s, r(s))ids]P. 

C J(k-l)T 

In the same way as (21) we can show that 

(25) 

Note also from condition ( 1 7) that 

N 

lg(xs,s,r(s))IP :S L lg(xs,s,i)IP :S KNIIxsW· 
i=l 

Consequently 

Substituting (25) and (26) into (24) yields 

(27) J < 

+ 
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Making use of (23), we can now substitute (13), (21) and (27) into (19) to 
obtain that 

(28) 

where C is a constant independent of k. By induction we can easily show 
from (28) that 

(29) 

Finally we can show the required assertion (18) from (29) in the same way 
as in the proof of Theorem 2.2 in Mao [13). The proof is therefore complete. 

4. Stochastic Differential Delay Equations with Markovian Swi­
tching. A special but important case of equation (3) is the stochastic dif­
ferential delay equation with Markovian switching of the form 

(30) dx(t) F(x(t), x(t- o(t)), t, r(t))dt 

+ G(x(t), x(t- o(t)), t, r(t))dw(t) 

on t 2: 0 with initial data x0 = ~ E C}
0 
([-r, 0}; Rn). Here 8 : R+ - [0, r] is 

Borel measurable while 

We impose a hypothesis: 

(H2) Both F and G satisfy the local Lipschitz condition and the linear 
growth condition. That is, for each k = 1, 2, · · ·, there is an hk > 0 
such that 

IF(x, y, t, i)- F(x, y, t, i)l + IG(x, y, t, i)- G(x, y, t, i)l 
:::; hk(ix- xi+ IY- yl) 

for all t 2: 0, i E Sand those x, y, x, y E Rn with lxiVIyiVIxiVIYI :::; k, 
and there is moreover an h > 0 such that 

IF(x, y, t, i)l + IG(x, y, t, i)l :::; h(1 + lxl + IYD 

for all x, y E Rn, t 2: 0 and i E S. 

If we define, for (cp,t,i) E C([-r,O};~) x R+ x S, 

(31) f(cp, t, i) = F(cp(O), cp( -o(t)), t, i), g(cp, t, i) = G(cp(O), cp( -o(t), t, i), 
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then equation (30) becomes equation (3) and (H2) implies (HI). So by 
Theorem 1, equation (30) has a unique global solution which is again denoted 
by x(t; {). Assume furthermore that F(O, 0, t, i) = 0 and G(O, 0, t, i) = 0. 

If v E C2•1(Rn X [-r, oo) X S; ~), define an operator LV from nn X 

nn X R+ X s to R by 

(32) LV(x, y, t, i) - \t~(x, t, i) + Vz(x, t, i)F(x, y, t, i) 

+ itrace(GT(x, y, t, i)Vzz{x, t, i)G(x, y, t, i)] 

N 

+ L'YiiF(x,t,j). 
i=l 

Note that the operators .CV and LF have the following relationship 

(33) .CV(cp,t,i) = LV(cp(O),cp(-b(t)),t,i). 

To state our new result, let us introduce one more notation. Let L):t (0; nn) 
denote the family of all Ft-measurable Rn-valued random variables X such 
that EIXIP < oo. 

THEOREM 4. Let {H2} hold. Let ..\,p, c17 c2 be all positive numbers and 
q > 1. Assume that there exists a function V(x, t, i) E C2•1(Rn x (-r, oo) x 
S; R+) such that 

(34) c1lxiP ~ V(x, t, i) ~ c2lxiP for all (x, t, i) ERn x [-r, oo) x S, 

and also for all t ~ 0 

(35) E[max LF(X,Y,t,i)] < -..\E(max F(X,t,i)] 
l$i$N - l$i$N 

provided X, Y E Lj-t (0; Rn) satisfying 

(36) El~ min V(Y,t- t5(t),i)] < qE[max V(X,t,i)]. 
19$N 19$N 

Then the trivial solution of equation (30} is pth moment exponentially stable 
and the pth moment Lyapunov exponent is not greater. than 

-'}'=-min{..\, log(q)/r}. 

Proof. We know that by definition (31) equation (30) becomes (3). To 
apply Theorem 2 we need to show that (12) implies (11). Let t ~ 0 and 
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¢ = { ¢(0) : -T s-; B s-; 0} E Lj.J[-T, OJ; Rn) satisfying (12). In particular, 
cp(O),cp(-o(t)) E Lj.

1
(D.;Rn) and 

E[min V(¢(-o(t)),t-o(t),i)] <qE[max V(¢(0),t,i)]. 
1:5,i:5,N 1:5,i:5,N 

That is, condition (36) is satisfied with X = ¢(0) and Y = ¢( -o(t)). By 
(35) we have 

E[l~~~LV(¢(0),¢(-o(t)),t,i)] s-; ->.E[1~~~ V(¢(0),t,i)]. 

This, together with (33), yields 

E [1~~~ CV(¢, t, i)] s-; ->.E [1~~~ V(¢(0), t, i)] 
which is ( 11). Hence all the assumptions of Theorem 2 are satisfied and the 
conclusions follow. The proof is complete. 

We now use this theorem to establish a useful result. 

THEOREM 5. Let (H2} hold. Let p, c1, c2 be positive numbers and >.1 > 
>.2 2:0. Assume that there exists afunction V(x,t,i) E C2

•1(Rn x [-T,oo) x 
S; R+) such that {34} is satisfied and, moreover, for all x, y E ~ and t 2: 0, 

(37) max LV(x, y, t, i) < ->.1 max V(x, t, i) + >.2 min V(y, t- o(t), i). 
1:5,i:5,N - 1:5,i:5,N 1:5,i:5,N 

Then the trivial solution of equation (30} is pth moment exponentially stable 
and the pth moment Lyapunov exponent is not greater than -(>.1 - q>.2 ) with 
q > 1 being the unique root of ).1 - q).2 = log(q)/T. 

Proof. Fort 2: 0 and X, Y E Lj:.JD.; Rn) satisfying 

E [min V(Y, t- 6(t), i)] < qE [max V(X, t, i)], 
1:5,i:5,N 1:5,i:5,N 

we drive from condition (37) that 

E [max LV(X, Y, t, i)] 
1:5,i:5,N 

< ->. 1E [max V(X, t, i)] + >.2E [min V(Y, t- 6(t), i)] 
1:5,i:5,N 1:5,i:5,N 

< -(>.1- q>.2)E[max V(X,t,i)]. 
1:5,i:5,N 

In other words, (35) is satisfied with A= >.1 - q>.2• So the conclusions follow 
from Theorem 4 and the proof is complete. 
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Let us now give a result on the almost sure exponential stability for the 
delay equation (30). 

THEOREM 6. Let p ~ 1. Assume that there is a constant I< > 0 such 
that for all (x, y, t, i) E Ir" x Ir" x R+ x S, 

(38) IF(x, y, t, i)l V IG(x, y, t, i)l :5 K(lxl + lyl). 

Then the pth moment exponential stability of the trivial solution of equation 
{30} implies the almost sure exponential stability. 

Proof. To apply Theorem 3 we need to verify (17). With definition 
(31), for¢> E L~t([-r, 0]; Ir"), t ~ 0 and i E S, we compute that 

E[lf(¢>, t, i)IP + lg(¢, t, i)IPJ 

E[IF(¢(0), ¢( -8(t)), t, i)IP + IG(¢(0), ¢( -8(t)), t, i)IPJ 

< 2/{P E(l¢(0) + ¢( -8(t))i)P :5 2P+l [{P sup EI¢(8)1P. 
-r:58:50 

Now the conclusion follows from Theorem 3. The proof is complete. 

5. Stochastic Differential Equations with Markovian Switching. 
If the coefficients F and G of equation (30) are independent of the past state 
x(t- 8(t)), equation (30) reduces to the stochastic differential equation with 
Markovian switching of the form 

(39) dx(t) = F(x(t), t, r(t))dt + G(x(t), t, r(t))dw(t) 

on t ~ 0. Of course, F and G are now functions from Rn x R+ x S to 
Rn and Rnxm, respectively; and the initial value x(O) = ~ is a bounded F0-

measurable Ir"-valued random variable. We still assume that both F and G 
satisfy the local Lipschitz condition and the linear growth condition so the 
equation has a unique global solution which is again denoted by x(t; ~). We 
also assume that F(O, t, i) = 0 and G(O, t, i) = 0. For V E C 2

•
1(Rn x R+ x 

S; R+), the operator LV is now from Ir" x R+ x S toR with a simpler form 

(40) LV(x, t, i) - Y;(x, t, i) + Vx(x, t, i)F(x, t, i) 

+ ~trace[GT(x, t, i)Vxx(x, t, i)G(x, t, i)] 

N 

+ L 'YiiV(x,t,j). 
j=l 

The following result follows directly from Theorem 5. 
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THEOREM 7. Let p, >., c1, c2 be positive numbers. Assume that there 
exists a function V(x, t, i) E C2,1(Rn X R+ X S; R+) such that 

and 

max LV(x, t, i) < -A max V(x, t, i) 
l:Si:SN - l:Si:SN 

for all (x, t, i) E Rn x ~ x S. Then the trivial solution of equation {39} is 
pth moment exponentially stable and the pth moment Lyapunov exponent is 
not greater than -).. 

We now establish a result on the almost sure exponential stability. 

THEOREM 8. Assume that there is a constant K > 0 such that for all 
(x,t,i) E ~X R+ X S, 

(41) IF(x, t, i)l V IG(x, t, i)l :::; Klxl. 

Then the pth (p > 0) moment exponential stability of the trivial solution of 
equation {39) implies the almost sure exponential stability. 

Proof If p 2:: 1, the conclusion follows from Theorem 6 directly. We now 
prove the result in the case of 0 < p < 1. Fix the initial value ( arbitrarily and 
write x(t; 0 = x(t). By the property of pth moment exponential stability, 
there is a pair of positive constants M and "Y such that 

(42) Elx(t)IP:::; Me-1 t on t 2:: 0. 

Let u > 0 be small enough for 

(43) 

where Cp = (32/p)P/2 is the constant given by the Burkholder-Davis-Gundy 
inequality ( cf. Mao [12}). Note that for any a, b, c 2:: 0, 

(a+ b + c)P :::; [3(a V b V c)]P = 3P(aP V bP V cP) :::; 3P(aP + bP + cP). 

Let k = 1, 2, · · ·. Using the Burkholder-Davis-Gundy inequality and {41)­
( 43) we compute that 

E [ sup !x(t)!P] 
(k-l)u::;t::;ku 
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< 3P Elx((k- 1)u)IP + 3P E(jku IF(x(s), s, r(s))lds)P 
(k-l)u 

+ 3PE[ sup jjt G(x(s), s, r(s))dw(s)IP] 
(k-l)u::;t:s;ku (k-l)u 

< 3PMe--r(k-l)u + (3uK)PE[ sup lx(t)!P] 
(k-l)u:s;t:s;ku 

+ 3PCPE(jku IG(x(s), s, r(s))l 2ds) ~ 
(k-l)u 

< 3PMe--r(k-l)u + (3uK)P(1 + Cp)E[ sup !x(t)IP] 
(k-l)u::;t:s;ku 

< 3PMe--r(k-l)u+~E[ sup lx(t)IP]. 
2 (k-l}u:s;t:s;ku 

Consequently 

(44) E[ sup lx(t)IP] :::; 2M3Pe--r(k-l)u_ 
( k-l)u:s;t:s;ku 

We can then show from ( 44) that 

limsup~loglx(t)l:::; _l 
t-oo t p 

a.s. 

in the same way as in the proof of Theorem 2 of Mao [13]. The proof is 
therefore complete. 

6. Examples. In this section we shall discuss a number of examples to 
illustrate our theory. In the following examples we shall omit mentioning the 
initial data. 

EXAMPLE 1. Consider a linear stochastic functional differential equation 
with Markovian switching of the form 

(45) dx(t) =::: A(r(t))x(i)dt + g(xtl r(t))dw(t) 

on t;::: 0. Here w(t) is a scalar Brownian motion, A: S--+ R!'-xn and we shall 
write A(i) = Ai, while g: C([-r, 0]; R!'-) x S--+ J?:l is defined by 

g( <p, i) = /_
0

T Bi<p( fJ)dfJ 

with B/s being all n x n matrices. Assume that there are symmetric positive­
definite matrices Qi, 1 :::; i :::; k, such that 

(46) 
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where and in the sequel Amax(A) and Amin(A) denote the largest and smallest 
eigenvalue of matrix A, respectively. We now claim that if 

(47) 

then the trivial solution of equation ( 45) is mean square exponentially stable, 
where 

and 

To show this, we let V(x, t, i) = xTQix. The operator .CV has the form 

(48) .CV('f?,t,i) - 'PT(O)(QiAi+A[Qi)'f?(O)+gT('f?,i)Qig('f?,i) 
N 

+ L '/'ij'PT(O)Qj'f?(O) 
j=l 

N 

'PT (0) ( QiAi + Af Qi + L '/'ijQj )'P(O) 
j=l 

+ (/_
0

T 'P( B)d(}) T B[ QiBi (/_
0

T 'P( B)d(}) 

< -Ali'P(O)I2 + TA4 j_0

T I'P(B)I 2dB. 

By ( 4 7) we can choose q > 1 for 

(49) 

For any t ~ 0 and¢ E L}t ([-T, 0]; Jr) satisfying 

on -T :::; (} :::; 0, we have 
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and hence, by ( 48), 

E[l~~~?vCV(¢>,t,i)] < ---\1EI¢(O)I 2 +r--\4 /_
0

r El¢>(0)i2d8 

< - (AI - r2q~3--'4 )Ei¢>(0)12. 

Recalling (49) we see all assumptions of Theorem 2 are satisfied with p = 2, 
and therefore the trivial solution of equation ( 45) is mean square exponen­
tially stable. To show the almost sure exponential stability, we verify condi­
tion (17): For¢> E L}t([-r,O];Rn) and i E S 

E[IAi¢>(0)1 2 + lg(¢>, i)j 2
] 

< IIAiW El¢>(0)1 2 + riiBiW 1° El¢>(0)i 2d0 

< L~~~,(IIAiW + r 2
11BiW)] _;~fso Ell<f>(O)W. 

Hence, by Theorem 3, the trivial solution of equation ( 45) is also almost 
surely exponentially stable. 

EXAMPLE 2. Let w(t) be a scalar Brownian motion. Let r(t) be a 
right-continuous Markov chain taking values inS= {1, 2} with generator 

r = ('Yijhx2 = ( ~1 ~1). 
Assume that w(t) and r(t) are independent. Let 8 : R+ ---). [0, r] be Borel 
measurable. Consider a one-dimensional stochastic differential delay equa­
tion with Markovian switching of the form 

(50) dx(t) = a(r(t))x(t)dt + (J(x(t- 8(t)), t, r(t))dw(t) 

on t 2: 0, where 

1 
a(l) = 4, a(2) = -3, 

while (J: R x R+ x S---). R satisfying 

It is interesting to point out that equation (50) can be regarded as the result 
of the following two equations 

(51) 
1 

dx(t) = 4x(t)dt + (J(x(t- 8(t)), t, l)dw(t) 
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and 

(52) dx(t) = -3x(t)dt + <Y(x(t- b(t)), t, 2)dw(t) 

switching to each other according to the movement of the Marknov chain r(t). 
We know that when 2 ~ p ~ 2.5, equation (51) is not pth moment exponen­
tially stable while equation (52) is. We shall now show that by switching the 
equations from one to the other the overall behaviour, i.e. equation (50) will 
be stable. To examine the pth moment exponential stability, we construct a 
function V: R x [-T, oo) x S--+ R+ by 

. {,BjxjP ifi=l, 
V(x, t, z) = jxfP if i = 2, 

where ,8 > 0 is a constant to be determined. It is easy to show that the 
operator LV from R x R x R+ x S to R has the form 

LV(x, y, t, i) 

= { -[,a( 1 - ~) - 1] ixiP + ,apcr12 lxiP-2 jo-(y, t, 1 )1 2 

-(3p + 1 - ,B)jxjP + ~jxjP-2 j<Y(y, t, 2)j2 

Hence, bearing in mind that 2 ~ p ~ 2.5, 

if i = 1, 

if i = 2. 

LV(x,y,t, 1) < -(,8[1- ~] -1)jxjP + ,Bp~2; 
1
)jxjP-2 jyj2 

< -(,8[1-E- (p- 1)(p- 2)] -1)ixiP+,B(p- 1)iYIP 
4 128 64 

< -(0.369,8- 1)jxjP + 0.024,8jyjP, 

where we have used the elementary inequality 

aabl-a ~ o:a + (1- o:)b if a, b 2: 0, 0: E (0, 1). 

Similarly 

LV(x, y, t, 2) 

Choosing ,8 for 

< -(3p + 1- ,B)jxjP + p(p- 1) lxjP-2jyj2 
32 

< -[3p+1-,B- (p-1)(p-2)]1x!P+ (p-1)1YIP 
32 16 

< -(6.976- ,B)jxjP + 0.094jyjP. 

0.369,8- 1 = 6.976 - ,8, 
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i.e. ,8 = 5.826, we then have 

LV( t .) < { -1.15x
2 

+ 0.139y2 if i = 1, 
x, y, ''l - -1.15x2 + 0.094y2 if i = 2. 

Consequently 

~paxLV(x,y,t,i) ~ -1.15x2 +0.139y2 
t=l,2 

-0.197[~pax V(x, t, i)] + 0.139 [min V(y, t, i)]. 
t=l,2 t=1,2 

By Theorem 5 we see that the trivial solution of equation (50) is pth moment 
exponentially stable, and by Theorem 6, it is also almost surely exponentially 
stable. 

EXAMPLE 3. Let w(t) be a scalar Brownian motion. Let r(t) be a 
right-continuous Markov chain taking values in S = { 1, 2} with generator 
r = (l'ijhx2, where 

-'Yn = 1"12 > 0 and - 1"22 = /"21 > 0. 

Assume that w(t) and r(t) are independent. Consider a one-dimensional 
linear stochastic differential equation with Markovian switching of the form 

(53) dx(t) = o:(r(t))x(t)dt + o-(r(t))x(t)dw(t) 

on t ;::: 0. Here a(i) and o-(i), i = 1, 2, are all constants and we shall write 
o:(i) = ai and o-(i) = O"i· Assume that there is a number p > 0 such that 

(54) 1 + p[(1- p)o-i- 2a1] > (1 + p[(1- p)o-~- 2a2])-1 > O. 
21"12 2!"21 

We shall now show that the trivial solution of equation (6.8) is pth moment 
exponentially stable. Choose a positive constant j3 such that 

(55) 1 
p[(1-p)o-i-2a1J j3 (

1 
p[(1-p)o-~-2a2])-1 

+ 2 > > + 2 > 0. 
'Y12 'Y21 

This implies 

(56) 

and 

(57) 
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Define V : R x R+ x S --* R+ by 

V(x, t, i) = ~iixiP 

with ~1 = 1 and ~2 = ~- Then the operator LV has the form 

LV(x, t, i) = [Pai~i + ~p(p- 1)~icrT + '"Yi1~1 + l'i2~2] ixiP 

It is then easy to show that 

Consequently 

max{LV(x, t, 1), LV(x, t, 2)} 
A1 A A2 • < -(.X1 A -X2)IxiP = -
1 

V ~ max{V (x, t, 1), V(x, t, 2)}. 

By Theorems 7 and 8 we conclude that the trivial solution of equation (53) 
is pth moment exponentially stable and is also almost surely exponentially 
stable. 

As a special case, let us put 

(58) a 1 = 1, a 2 = 2, a-1 = a-2 = 2, ')'12 = 1, ')'21 = 3. 

We can regard equation (53) as the result of the following two equations 

(59) dx(t) = x(t)dt + 2x(t)dw(t) 

and 

(60) dx(t) = 2x(t)dt + 2x(t)dw(t) 

switching to each other according to the movement of the Markov chain 
r(t). It is known that equation (60) is not almost surely exponentially stable 
although equation (59) is. On the other hand, choosing p = 0.2 we have 

1 + p[(1- p)cri - 2a1] = 1.12 > (1 + p[(1- p)cr~- 2a2]) -
1 
= l.04. 

2~2 2~1 

That is, condition (54) is satisfied. Hence equation (53) with coefficients 
defined by (58) is almost surely exponentially stable. In other words, for 
equation (53) to be stable, it is not necessary to require each of equations 
(59) and (60) be stable. 
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OF POSITIVE SOLUTIONS OF ONE DIFFERENCE 

EQUATION 

G. PAPASCHINOPOULOS , J. SCHINAS AND V. HATZIFILIPPIDIS* 

Abstract. In this paper we study the periodicity and the asymptotic behavior of 
k-1 

positive solutions of the difference equation Xn+I = A+ Xn-k '2:-1-, n E {0, 1, ... }, 
s=OXn-s 

k=l,2, ... and AE(O,l)U(k,oo). 

1. Introduction. In [1] Amlech, Grove, Ladas and Georgiou studied 
the global stability, the boundedness and the periodicity of the positive 
soloutions of the difference equation 

(I) A 
Xn-l 

Xn+l = +--, 
Xn 

n = 0,1, ... 

where A E [0, oo), x_ 11 xo E (0, oo). 

(2) 

In this paper we concider the difference equation of the form 

k-l 1 
Xn+l=A+xn-kl:--, nE{0,1, ... } 

s=O Xn-s 

where X-k, ... , x0 E (0, oo ), A E [0, 1] U (k, oo ), and k = 1, 2, ... It is obvious 
that fork= 1 equation (2) reduces to (1). 

First we find necessary and sufficient conditions so that equation (2) 
has solutions of pariod k + 1. Also we find conditions so that a positive 
solution of (2) tend to the unique positive equilibrium c =A+ k as n -j. oo. 
Moreover if 0 :::; A < 1 we prove that (2) has unbounded soloutions, if A= 1 
we find conditions so that a positive solution of (2) tends to a period k + 1 

* Democritus Univercity of Thrace, Department of Electrical and Computer Engineer­
ing, GR-671 00 Xanthi, Greece 
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solution of (2) and if A > k the positive equilibrium is qlobally asymptotically 
stable. Finally for k = 2 (resp. k = 3) we prove that if A > 1, the positive 
equilibrium A+ 2 (resp. A+ 3) is locally asymptotically stable. 

2. Main Results. We prove now our main results. In the first propo­
sition we study the periodic nature of the positive solutions of (2). 

PROPOSITION 1. 
(i) Suppose that (2) has a nontrivial positive solution Xn of period k + 1. 

Then A= 1. 
(ii) Let A = 1. A solution Xn of ( 1) is periodic of period k + 1 if and only 

if 

(3) 
k 1 
I:-=1. 
s=O X-s 

Proof (i) Suppose that (1) has a nontrivial solution Xn of period k + 1. 
Then 

(4) Xk+1-s = X- 8 , S = 0, 1, ... , k. 

Then from (2) and (4) it follows that for i,j E {0, 1, ... , k} 

k-1 1 
X-i = Xk+1-i = A + X-i L --­

s=O Xk-i-s 

k-1 1 
X-j = Xk+l-j = A + X-j L --­

s=O Xk-j-s 

from which it is obvious that 

(5) 

k~l 1 
X-iX-j = AX-j + X-iX-j L --­

s=O Xk-i-s 

k-1 1 
X-jX-i = Ax_i + x_iX-iL . 

s=O Xk-j-s 

Without loss of generality we may suppose that j > i. Then since Xn is 
periodic of period k + 1 we get 

(6) 
k-1 1 k-1 1 1 1 
I: -I:-=---
s=o Xk-i-s s=O Xk-j-s X-j X-i 
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Therefore relations (.5) and (6) imply that 

(A - 1) (X-i - X_ j) = 0, i, j E { 0, 1, .. , k} 

from which the proof of (i) follows immediately. 
(ii) Let A= 1 and Xn be a positive solution of (2) of period k + 1. Then 

we have x1 = x-k· So from (2) relation (3) holds. 
Suppose now that (3) is satisfied. Then from (2) and (3) we have 

(7) 

Therefore from (2) and (7) it follows that 

k-1 1 ( 1 1 1 ) 
x2 = 1 +x1_k L -- = 1 +x1-k ------ +x1-k = x1-k· 

s=O X1-s X1 Xl-k X-k 

Working inductively we can easily prove that Xn+k+l = Xn , n = -k, -k + 
1, .... This completes the proof of the proposition. 

In the following proposition we find conditions so that a positive solution 
of (2) tends to the positive equilibrium c =A+ k. 

PROPOSITION 2. Let Xn be a positive solution of (2). Suppose that there 
exists an mE { -k, -k + 1, ... } such that 

(8) (i) Xn 2: A+k or (ii) Xn < A+k, n 2: m. 

Then Xn tends to the positive equilibrium c =A+ k of (2). 
Proof Let Xn be a positive solution of (2) such that (i) of (8) is satisfied. 

Then from ( 2) we take 

(9) 
k 

Xn+l ~ A+ A+ k Xn-k, n > m + k - 1. 

We concider the difference equation 

(10) 

We can easily prove that the general solution of (10) has the form 

(11) ( 
k ) k+1 

v ( 2smr 2smr) 
Un = Ak L C5 COskl+dssin-k-. +A+k 

+ s=O + + 1 
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where 

(12) V= 2 
{ 

k + 1 
if k is an odd number 

~ if k is an even number, 

C8 ,ds E (O,oo). Therefore from (11) it is obvious that 

(13) lim Un = A+k. 
n-+oo 

We concider the solution Un of (10) such that 

(14) Um+i = Xm+i 1 i = 0, 1, ... , k. 

From (9) and (10) it follows that 

(15) 
k 

Xn+l- Un+l ~ A+ k (xn-k- Un-k), n > m + k- 1. 

Then from (14) and (15) we can easily prove by induction that 

(16) 

So from (i) of (8), (13) and (16) it is obvious that Xn tends to c as n -+ oo. 
Simirarly we can prove that if (ii) of (8) holds then Xn tends to cas n-+ oo. 
This completes the proof of the proposition. 

In the following proposition we prove that if 0 ~ A < 1 then the equation 
(2) has unbounded solutions. 

PROPOSITION 3. Suppose that 0 ~ A< 1. Let Xn be a positive solution 
of {2} such that 

(17) 
k 1 
L- < 1 - A, x 0 < 1. 
s=l X-s 

Then 

(18) lim X(k+l)n+m = 00, 
n-+oo 

mE {1,2, ... ,k}, lim X(k+l)n+k+l = A. 
n-+oo 

Proof We prove by induction that for n = 0, 1, ... 

(19) X(k+l)n+m > A+ X(k+l)(n-l)+m' m E {1, 2, ... , k }, X(k+l)n+k+l < 1. 
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From (2) and (17) we get formE {1, 2, ... , k} 

(20) 
k-1 1 

A "\:""' > A + Xm-k-1 A 
Xm = + Xm-k-1L._... > + Xm-k-1· 

s=O Xm-1-s Xo 

Moreover relations (2), (17) and (20) imply that 

(21) 

k-1 1 k-1 1 
=A+xol:- < A+xoL:---

s=O Xk-s s=O A+ X-s·-1 

k-1 1 
<A+xoL:--<1. 

s=O X-s-1 

401 

Therefore from (20) and (21) relations (19) hold for n = 0. Furthermore 
from (2), (21) formE {1,2, ... ,k} we get 

(22) 
k-1 1 
"\:""' Xm 

Xk+Hm = A+XmL._... >A+--> A+xm. 
s=O Xk+m-s Xk+1 

Then from (2), (17), (20), (21) and (22) it follows that 

(23) 

k-1 1 k-1 1 
x2(k+l) = A+xk+lL <A+ 2:---

s=O X2k+1-s s=O A + Xk-s 

k-1 1 
<A+l:--<1. 

s=O X-s-1 

Therefore from (22), (23) relations (19) hold for n = 1. 
Suppose that (19) hold for all n ::; r. Then from (2) we get for m E 

{1,2, ... ,k} 

(24) 

k-1 1 
X(k+1}(r+1}+m =A+ X(k+l)r+mL ----­

s=O X(k+1)r+k+m-s 

1 
> A + X(k+l)r+m > A + X(k+l)r+m· 

Xk+l)(r+l) 

Moreover from (2), (24) and since (19) hold for n::; r we have 

(25) 

k-1 1 
X(k+1)(r+2) = A+ X(k+l)(r+l) L ---­

s=O X(k+l)(r+1)+k-s 

k-1 1 
< A + X(k+1)(r+l) L ---­

s=O X(k+1)r+k-s 

k-1 1 
<A+'L:--<1. 

s=O X-s-1 
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Therefore from (20) - (25) relations (19) hold. 
Suppose first that A =f=. 0. Then from (19) it is obvious that 

(26) lim X(k+l)n+m = oo, 
n-+oo 

mE {1, 2, ... , k }. 

Moreover from (2), (19) it follows that 

(27) 
k-1 1 k-1 1 

X(k+l)(n+l)- A= X(k+l)nL < L ----
s=O X(k+1)n+k-s s=O X(k+1)n+k-s 

From (26) and (27) it follows that 

(28) J!_,~ X(k+l)(n+1) = A. 

Using (26) and (28) relations (18) hold when A =f=. 0 . 
Suppose now A= 0. Using (17), (19) for A= 0 there exist 

(29) lim X(k+1)n+m = Lm, m = 1, 2, ... , k, Lm E (1, oo). 
n-+oo 

Suppose that there exists an r E {1, 2, ... , k} such that Lr =f=. oo. Without 
loss of generality we may suppose that 

(30) 

From (2) we get 

(31) 
k-1 1 

X(k+l)(n+1)+1 = X(k+l)n+l L ----­
s=O X(k+1)n+k+l-s 

Then from (19), (29), (30), (31} there exists the J~~X(k+l)n = L 0 and 

L0 = 1, 
k 1 
L:-=0 
s=2 Ls 

from which it follows that 

(32) Lo = 1, Ls = 00, s = 2, ... , k. 

Furthermore from (2) we get 

(33) 
k-1 1 

X(k+l)(n+l) = X(k+l)n L ---­
s=O X(k+l)n+k-s 
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Hence relations (32) and (33) imply that L1 = 1 which is a contradiction. 
Therefore (26) are satisfied. Moreover from (19), (26), (33) we have (28) hold 
with A = 0. This completes the proof of the proposition. 

In the following proposition if A = 1 we find conditions so that a positive 
solution of (2) tends to a period k + 1 solution of (2). We need two lemmas. 

LEMMA 1. Suppose A= 1. Let Xn be a positive solution of {2) such that 
for n 2: no where n0 E { -k,-k + 1, ... } 

(34) X(k+l)n+r; ~ Mi, i E {1,2, ... ,m}, TiE {1,2, ... ,k+1}, 2 ~ m ~ k 

Mi are positive constants which satisfy 

(35) 
m 1 
L M =l. 
s=1 s 

Then, it holds, 

J~X(k+l)n+r; = lvh i E {1, 2, ... , m}, TiE {1, 2, ... , k + 1}, 2 ~ m ~ k, 

J.!_.~ X(k+l)n+JLi = 00, f.J,j =/:- Ti, j E {1, 2, ... , k + 1 - m }, 

J.-Li E {1,2, ... ,k+1}. 
(36) 
Proof From (2), (34) we have fori E {1, ... , m}, 2 ~ m ~ k 

X(k+l)(n+1)+r; 

(37) 

k-1 1 
= 1 + X(k+1)n+r; L ----­

s=O X(k+1)n+k+r;-s 

(

r;-1 1 k+l 1 ) 
= 1 + X(k+1)n+r; L + L 

s=1 X(k+1)(n+1)+s s=r;+1 X(k+1)n+s 

(

i-1 1 m 

= 1 + X(k+1)n+r; L + L 
s=1 X(k+1)(n+1)+rs s=i+1 X(k+1)n+rs 

1 

r; 1 k+1-m 1 ) 

+.?; X(k+l)(n+l)+JLs + s=~1 X(k+l)n+JLs 

i-1 1 m 1 
2:1+L: +I: 

s=1 X(k+1)(n+1)+rs s=i+1 X(k+1)n+rs 

m 1 
>1+ I: 1\II. 

s=1,s;i:i 8 
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where ri = max {j, J.Li ~ Ti- 1 }, j E {1, 2, ... , k +1-m}. From (35) it 
follows that 

(38) 
m 1 

Wi = L M < 1. 
s=1,s¢i 8 

Then from (2), (34), (35) and (37) we get 

(39) X(k+1)(n+l)+r; ;?: 1 + Wi, X(k+1)(n+2)+r; ;?: 1 + Wi +WI 

/ and working indectively we can prove that 

(40) 

Furthermore from (35), (38) we have 

(41) 
1- w~+1 

lim t 

n-oo 1- Wi 

1 
--=Mi. 
1- Wi 

Therefore relations (34), (40) and (41) imply that 

( 42) J~~ X(k+1)n+r; = Mi, i E {1, ... , m }, 2 ~ m :::; k. 

Moreover from (2) and ( 42) it follows that 

(43) 

Then using ( 35) and ( 43) we get 

( 44) J~~ X(k+1)n+~ti = oo, /.Lj =/= Ti, j E {1, ... , k + 1 - m }, /.Lj E {1, ... , k + 1 }. 

From (42) and (44) relations (36) hold. This completes the proof of the 
lemma. 

LEMMA 2. Suppose that A = 1. Then the following relations hold for 
m = 2,3, ... and n = 0, 1, ... , 

a(n,m) ( ) 
(45) X(k+I)n+m.- X(k+l)(n-1)+m = b(n, m) X(k+1)n+m-1- X(k+1)(n-1)+m-1 

where 

k-1 k-1 

a(n, .n) = L II X"(k+l)(n-l)+s+m, 
j=O s=O,s¢j 

k 

b(n, m) = II X(k+l)(n-1)+s+m· 
s=1 
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Proof From (2) we have 

k 1 
X(k+l)n+m - X(k+l)(n-l)+m = 1 + X(k+l)(n-l)+mL -----­

s=l X(k+l)(n-l)+m+s 

1 ( k k 
-X(k+1)(n-1)+m = b( ) L II X(k+l)(n-l)+s+m 

n, m j=O s=O,s:f:j 

(46) -II X(k+1)(n-l)+s+m- II X(k+l)(n-l)+s+mL ------

k-1 k-l k-1 1 ) 

s=O s=-1 r=O X(k+l)(n-l)+m+r 

1 (k-1 k k-1 k-1 ) 

= b(n, m) ~ s=TI:f:j X(k+1)(n-1)+s+m-~ s=Jls:f:j X(k+1)(n-1)+s+m 

a(n,m)( ) 
= b( n, m) X(k+1)n+m-1 - X(k+l)(n-1)+m-1 · 

From ( 46) the proof of the lemma is completed. 

405 

PROPOSITION 4. Let A = 1 and Xn be a positive solution of {2). Then 
the following statements are true: 

(i) if 

( 

k-1 1 ) 
(47) X_k 1-~ X-s :S 1, ( resp. x_k (1 -I: -1 ) ~ 1) 

s=O X-s 

then X(k+l)n+m' m = 1, ... , k + 1 are increasing (resp. decreasing) 
sequences. 

{ii) Suppose that {36} do not hold. Then there exist 

( 48) lim X(k+l)n+m = Mm, 
n-+oo 

mE {1,2, ... ,k+1}, Mm E (1, oo), 

and 

(49) 
k+l 1 
2::::-=1. 
s=1 Ms 

{iii) Suppose that {36} are not satisfied. Then the positive solution Xn of 
{2) tends to a period k + 1 solution. 

Proof (i) Suppose that the first inequality of (47) holds. Then from (2) 
we can easily find that 

(50) 
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Suppose that 

(51) X(k+l)(n-1)+1 ::; X(k+l)n+l· 

From Lemma 2 we can prove that 

X(k+l)(n+l)+l - X(k+l)n+l = X(k+l)n+k+2 - X(k+l)(n-1)+k+2 

(52) 
a(n,k+2)( ) = b( n, k + 2) X(k+l)n+k+l - X(k+l)(n-1)+k+l = ·· · 

k+2 a(n,s) 
= II b( ) ( X(k+l)n+l - X(k+l)(n-1)+1) . 

s=2 n, s 

Relations (51) and (52) imply that 

(53) X(k+l)n+l ::; X(k+l)(n+l)+l· 

Then since (50), (51) and (53), by induction method we have that X(k+l)n+l 

is an incresing function. Then using (52) we can easily prove that X(k+l)n+m' 

m = 1, ... , k + 1 are increasing functions. Simirarly if the second ralation 
of ( 47) holds we can prove that X(k+l)n+m, m = 1, ... , k + 1 are decreasing 
functions. 

(ii) From (i) we have that X(k+l)n+m' m = 1, ... , k + 1 are increasing or 
decreasing functions. First we suppose that X(k+l)n+m' m = 1, ... , k + 1 are 
increasing functions. Then (48) hold where Nli E (1, oo] , i = 1, 2, ... , k + 1. 
Suppose first that 

(54) Mi = oo, i = 1, ... , k + 1. 

From (2) we get for m = 1, ... , k + 1 

(55) 
1 

r(' , l"-, ''+-- = 1 -1- r"+'' . "-----~ n:-r JV•T~J m - • -~,. ~Jn;-m L..... 
s=O X(k+1)n+k+m-s 

k-1 

Then from (54) and (55) for an L > k there exists a no such that for m = 
1, ... , k + 1 and n ~no 

(56) 
k-1 1 

h(n, m) = X(k+1)n+mL > L. 
s=O X(k+1)n+k+m-s 

Then from (56) we have form= 1, 2, ... , k + 1 

kX(k+l)n+m max { 
1 

, s = 0, ... , k- 1} ~ h(n, m) > L 
X(k+l)n+k+m-s 
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from which we get form= 1, 2, ... , k + 1 

(57) X(k+l)n+m > Tmin { X(k+l)n+k+rn-s 1 0 :S S :S k- 1} 

where 

(58) T = Lk-1 > 1. 

We fix an E {0, 1, ... }. We suppose that 

(59) min { X(k+l)n+k+l-s 1 0 :S S ::::; k- 1} = X(k+l)n+k+l-r 

where r E {0, ... , k- 1 }. Moreover from (57) it follows that 

(60) X(k+l)n+k+l-r > T min { X(k+l)n+2k+l-S-T) 0::::; s::::; k- 1}. 

From (59) and since X(k+l)n+m , m = 1, ... , k + 1 are increasing functions 
we have 

(61) < { 
X(k+l)n+k+l-s 1 0 :S S :S T - 1 

X(k+l)n+k+l-r _ 1 k 
X(k+l)n+2k+2-s' r + :S S :S - 1. 

Using (58), (60) and (61) it follows that 

(62) min { X(k+l)n+2k+l-s_.:n 0 :S S :S k- 1} = X(k+l)n+k+2· 

Therefore from relations (60) and (62) we get 

(63) X(k+l)n+k+l-r > TX(k+l)n+k+2· 

Then relations (57) form= 1, (59) and (63) imply that 

which is a contradiction since (58) holds and X(k+l)n+l is an increasing func­
tion. Therefore (54) does not hold. 

Suppose now that there exists am E {1, ... , k + 1} such that 

(64) Mm =f. oo and Mi = oo, i E {1, ... , k + 1}, i =f. m. 

Then from (55) and (64) we get Mm = 1 which is a contradiction. So since 
(36) do not hold we have that ( 48) hold. 
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Suppose now X(k+ 1)n+rn, m = 1, ... , k + 1 are decreasing functions. Con­
sider that there exists a m E {1, ... , k + 1} such that Mrn = 1. Then from 
(55) we get 

k-1 1 
1=1+2::-----­

s=O J!.,~ X(k+l)(n+1)+rn-1-s 

from which we have that 

lim X(k+1)n+rn+s = 00, S = 1, ... , k 
n-->oo 

which is contradiction. Therefore ( 48) are satisfied. 
Using (55) form = 1 and ( 48) we can easily prove that ( 49) is satisfied. 
(iii) Using Proposition 1 and relations (48) and (49) the proof of (iii) 

follows immediately. This completes the proof of the proposition. 

In the following proposition we prove that if A > k the positive equilib­
rium c is globally asymptotically stable. 

PROPOSITION 5. Suppose that A > k. Then the positive equilibrium of 
(2} c is globally asymptotically stable. 

Proof First we prove that c is locally asymptotically stable. The lin­
earized equation of (2) about the positive equilibrium c = A + k is the 
following 

(65) 
1 n k 

Yn+1 + A + k L Ys - A + k Yn-k = 0 
s=n-k+1 

From Remark 1.3.1 [2,p.12] (65) is asymptotically stable if 

2k 

A+k<
1 

which is true since A > k. Therefore c = A+ 1 is locally asymptotically 
stable. 

It remains to show that every positive solution of (2) tends to c as n -+ 

oo. First we prove that Xn is bounded above and below. From (2) it is 
obvious that 

(66) Xn 2 A, n > 1. 

Therefore from ( 2) and ( 66) we get 

(67) 
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vVe can prove that the solution of the equation 

(68) 
k 

U A+ U n >_k n+l = A n-k, 

such that U5 = X 5 , s = 0, 1, ... , k has the form 

(69) ( 
k ) k+l v ( 2smr . 2smr) A 2 

Un = A L C5 COskl+dssmkl +A- k 
s=O + + 

where v is defined in (12), C5 , ds depends on X 5 , s = 0, 1, ... , k. Using (67), 
(68) and arguing in Proposition 2 we can prove that 

(70) Xn:::; Un, n = 0, 1, ... 

Then from relations A > k, (69) and (70) it follows that Xn is a bounded 
function. Therefore we can set 

(71) limsupxn = L, lim inf Xn = M. 
n-oo n-oo 

From (2) and (71) we have 

(72) 

and so 

(73) 

kM 
M>A+-- L 

(A - k) ( L - M) :::; 0. 

Then since A > k, relation (73) imply that L = M and so there exists the 
lim Xn· From (2) we obtain that lim Xn = c. This completes the proof of 

n--+oo n-+oo 
the proposition. 

In the last proposition we prove that for k = 2, 3 if A > 1, then the 
positive equilibrium of (2) is locally asymptotically stable. 

PROPOSITION 6. Let A> 1. Then fork= 2, 3 the positive equilibrium 
c = A+ k of {2} is locally asymptotically stable. 

Proof Suppose first k = 2. Then equation (65) reduces to the equation 

1 2 
al = A+2' a2=---. 

A+2 

From Lemma 4 [4] (74) is asymptotically stable if and only if 

(75) la1 + a2l < a1 + 1, la1- 3a21 < 3- ar, a~+ a1- a1a2- 1 < 0. 
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We can easily prove that (75) hold if and only if A > 1 from which we take 
that the positive equilibrium c of (2) for k = 2 is locally asymptotically 
stable. 

Finally suppose that k = 3. Then equation (65) reduces to the equation 

1 3 
(76) Yn+lal (Yn + Yn-1 + Yn-2) + ct2Yn-3 = 0, ct1 = A+ 3 , ct2 = -A+ 3 · 

From Lemma 1 [3] (76) is asymptotically stable if and only if the following 
conditions are satisfied: 

(77) 

where 

(i) -\1 :;f 0, (ii) ~: > 0, (iii) ~: > 0, (iv) ~: > 0, 

( ) A4 (-'2-\3 _ A4) -\~-Xs 
v -\1 -Xi -\1 > -\~ 

A _ 4(A+6) 
2

- A+3 ' 
6A-2 

-\3 = A+3' 
-\ _ 4(A+6) 

4
- A+3' 

A-1 
As=--. 

A+3 

vVe can easily prove that (77) hold if and only if A > 1. Therefore the 
positive equilibrium c of (2) for k = 3 is is locally asymptotically stable. 
This completes the proof of the proposition. 

REMARK 1. It remains an open problem concerning the stability of the 
positive equilibrium of equation (2} if 1 < A ~ k. 
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Abstract. ADDAMS System Inc. (1990-1993) suggested a memory system using 
a simple feedback loop circuit for an analog signal. The circuit includes a time-delay 
element with no gain. If the perturbations and noises can be neglected, then this circuit 
is capable of permanently storing a signal, whose time duration is shorter than the time­
delay function in this loop. In this paper, we shall discuss the stability of signal and the 
role of perturbations in the feedback system. 

1. Introduction. In the early 1950s, a simple linear feedback loop cir­
cuit was suggested as a possible mechanism for the implementation of an 
analog memory system. Consider the system M shown in Figure 1, where 
vh denotes an ideal linear delay with delay time h > 0. 

The input ~(t) and output x(t) for this system obey the relationship 
x(t) = ~(t- h), and the transfer function is e-ph [13]. Here we assume that 
~(t) is zero outside of the interval -h ::; t < 0 and x(t) = 0 for t < 0, 
ensuring x(t) = ~(t- h) + x(t- h). Then the identity x(t + Nh) = ~(t), 
-h ::; t < 0, holds for all positive integers N. Notably, the system M is 
capable, in principle, of permanently storing a signal ~(t) ( -h ::; t < 0) 
whose time duration is shorter than the time-delay h in the system JYI. 

• This project is related to the operations of ADDAMS System Inc., Japan. 
t Institute for Nonlinear Science, National University of Ireland University College, 

Cork, Permanent address: Institute of Information Transmission Problems, Russian 
Academy of Science, 19 Ermolovoy str., Moscow 101447, Russia. 
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Department of Mathematics The University of Queensland QLD.4072, Austraha 
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~ ( t)----'. + J------1 x(t) 

FIG. 1. Simple feedback loop with time delay Vh 

This idea has attracted industrial interest as a potential alternative mem­
ory mechanism to semiconductor materials and other electronic devices. The 
attraction of this alternative mechanism is that the hardware needed to build 
such a memory mechanism is well suited to commercial applications. 

In 1988, ADDAMS Inc. performed an experiment with Analog Dynamic 
Memory ADM1 following from this idea [3}. Optoelectronic elements such as 
light fibers and Charge Coupled Device ( CCD) elements were chosen in this 
experiment to ensure low losses in signal transmission. This experiment was 
successful in demonstrating the implementation of such an ADM system, 
and was involved with several patents [1, 2]. However, gradual losses of 
memorized signals were observed as the time t increased, and the signal 
approached a flattened value for increased time. This signal loss has been one 
of the serious problems in the further development of the ADM system. Here 
some questions arise: although the memory system discussed here is simple 
in its structure, it is not straightforward to state that such a memory system 
is stable with respect to variations in device parameters and perturbations. 

This motivates the analysis of the robustness of the ADM system con­
sidered in this work. We focus attention on the role of perturbation in the 
information transmission channels. This perturbation is intrinsically dis­
tributed along the channels, but using the method of lumping [61, p.6 we 
represent it as a finite dimensional linear system we with a transfer function 
Wc(P) in the feedback path of the system Me,h in Figure 2. 

Concentration and separation of resistance, inductance and capacitance 
features of the information transmission channel (which is the essence of 
the lumping method) introduce some errors into the system description. 
However, it seems that this method is quite adequate in the analysis of 

1 ADM stands for "Analog Dynamic Memory", and it is the trademark of the ADDAMS 
System Inc., Japan. 
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~(t) x(t) 0-
y(t) 

Dh we 

FIG. 2. A feedback loop system considered in the paper 

the ADM system. Here we consider a case when the element We is a gen­
eral finite dimensional linear system, to be described by the relationships 
cz' = Az + fy(t), x(t) = (g, z(t)) where c is a (small) positive parameter 
which characterizes the overall quality of the channel, A is a d x d-matrix, 
J, g E 1Rd and (·, ·) denotes the Euclidean scalar product in lRd. The vector 
variable z represents here the internal dynamics of the lumped inductance 
link We, whereas the scalar variable x = (g, z} is the observable output of 
this link. Below we suppose that A is a Hurwitz matrix, that is the eigenval­
ues of the matrix A lie in the open left hand side of the complex plane, and 
the conditions 

(1.1) det( -A)= 1, 

are satisfied. The first condition (1.1) can always be satisfied by an appropri­
ate scaling, since det( -NJ) > 0 for any Hurwitz matrix M; the second one 
means that the channel "does not spoil the constant signals" in the sense 
that for a constant input y(t) = y* = const the function x(t) = y* represents 
a possible output of the linear element we (the corresponding internal dy­
namics z(t) is actually given by z(t) = -A-1 f). This second condition (1.1) 
holds in most situations, for instance it holds for the simplest inductance link 
with the transfer function W(p) = (cp+ 1)-1. It means that the element We 
works as a low pass filter, which is a typical feature of inductance elements. 

With the choice of the lumped inductance element described above, the 
output x(t) of the closed loop system is defined by the relationship 

(1.2) x(t) = (g, z(t)) 

where the restrictions of the function z(t), Nh ~ t < (N+l)h are constructed 
inductively in N as the solutions of the vector differential equations 

(1.3) cz' = Az + y(t- h)f, 
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where y(t) coincides with ~(t) for N = 0 and y(t) coincide with x(t- h) for 
N > 0; the initial conditions YN coincides with an initial internal state y0 of 
the inductance link for N = 0 and is defined by the continuity condition 

(1.4) ZN = z(Nh- 0) = lim z(t) 
t-Nh 

for the positive integer N. This description can be also reworded as follows. 
The function z(t), t ?: 0, is the solution of the system of the delay differential 
equations 

(1.5) cz' = Az + x(t- h)f, x( t) = (g, z( t)} 

subjected the initial conditions 

(1.6) x(t) = ~(t), -h :S t < 0, z(O) = zo. 

Thus from the mathematical point of view we will be interested in the 
long term behaviour of the solution z(t) of the system (1.2)-(1.4), or, what 
is the same, the system (1.5), (1.6), and especially in the behaviour of the 
function (1.2) which represents the output of our closed loop system. The 
main attention will be paid to the following two questions. Firstly, we will 
investigate the asymptotic behaviour of solutions as t ~ oo. Under some 
simple technical restrictions we establish that the solutions are "flattening": 
they approach some constant functions. We will calculate these limits and 
also evaluate the convergence rate. Results will be formulated as Theorem 
1 and Proposition 2.1, in the next section and will be proved in Sections 3 
and 5. Secondly, we will investigate the rate of deformations of the stored 
signal. There are basically two sources of the deformations: on the one 
hand, an unfortunate choice of the initial condition z0 will spoil the stored 
signal from the very beginning. However it could be expected that these 
deformations should fade as time increases. On the other hand, for rather 
large t the output signal should be deformed gradually by, loosely speaking, 
the same forces which would eventually flatten the output. We wHl estimate 
the rate of deformations due to both causes and will clarify the nature of the 
corresponding deformations. The results will be formulated as Theorem 2, 
and will be proved in Section 4. 

The results will be formulated in terms of the transfer function vV (p) = 
(g, (pi- A)-1 f). One can say that even this transfer function is not known 
exactly in many situations. However, the whole point here is that the 
qualitative character of the process does not depend on detailed information 
concerning the function W (p); moreover, even the constants which govern the 
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rates of deformation etc, will be given in terms of only the fir8t few derivatives 
of the corresponding transfer function lV(p) at p = 0. 

To conclude the introduction, we note that the system with the block 
diagram represented by Figure 1 appears as a fragment of many other tech­
nical and biological objects (for instance, it is not dissimilar from some phe­
nomenological models of short-time human memory). 

2. Main results. 

2.1. Notations. It will be convenient from now on to fix the matrix A 
and the vectors f, g, however, we consider c: and has the parameters. 

Denote by 

(2.1) W(p) = (g, (pi- A)-1 f). 

This function is a rational function of the form W(p) = 1(~{ where L(p) = 
det(pJ -A) = pd+ad-1Pd-1+ ... +a1p+ao and M(p) = bd-lPd-1+ ... +b1p+bo 
are some polynomials. The second condition (1.1) can be rewritten as 

(2.2) 
ao 

W(O) = bo = 1. 

Thus by the first condition ( 1.1) 

(2.3) ao = bo = 1. 

Let .Ch be the set of all integrable scalar functions TJ : [-h, OJ --+ R. 
For each initial function ~(t) E .Ch define 

(2.4) Ee,h(~, zo) = ( 1 + ~(a1 - bi)) -l ( Eh(~)- c: (g, A-1zo)), 

where Eh(~) is the mean value of ~(t) E .Ch, Eh(~) = k f~h ~(s) ds. The first 
multiplier in (2.4) is finite and positive for sufficiently small c:. 

2.2. Rate of flattening of the output signal. Let us come back to 
the analysis of the initial problem (1.2)-(1.4) describing the dynamics of the 
system shown at Figure 2. 

We will understand solutions of the equation (1.3) in the classical sense: 
a solution is an absolutely continuous function which satisfies the equation 
for almost all t 2: 0. Then the system (1.2)-(1.4) has the unique solution 
ze,h(t; ~' z0 ) for any integrable~ and any z0 E Rd; this is continuously differen­
tiable fort > h. Note that the restrictions of the function z(t) = Ze,h(t; ~' z0) 
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to the intervals [Nh, (N + 1)h) can also be defined inductively in N by the 
explicit formulas 

1 Jt z(t) = eA(t-Nh)/c ZN +- eA(t-s)/c fy(s) ds, 
c Nh 

Nh ~ t < (N + 1)h, 

where y(t) coincides with ~(t) for N = 0 and y(t) coincides with (g, z(t- h)) 
for N > 0, whereas ZN coincides with an initial internal state z0 for N = 0 
and is defined by the continuity condition (1.4) for the positive integer N. 
These formulas, however, will not be of much help below. 

We will also use the following notation 

(2.5) 

and 

(2.6) 

Note in passing that by (2.3) the constant a in (2.5) can be compactly ex­
pressed in terms of the transfer function (2.1 ): 

(2.7) a= W"(O)- (W'(0))2
• 

Recall, that we always assume that the eigenvalues of the matrix A lie 
in the open left hand side of the complex plane, and the conditions 

(2.8) det( -A)= 1, 

are satisfied. 
THEOREM 1. Let a> 0 and for -oo < w < oo and w =/; 0 let 

(2.9) IW(iw)l < 1. 

Then there exists a positive u( r), r < '*' such that the estimate 

(2.10) t~~ (e1
€

2

t izc,h(t;~,zo)- Ee-,h(~,zo)J*I) = 0 

holds for any 

(2.11) c E (0, u(r)h], 

Note that the condition (2.9) is a standard assumption in absolute sta­
bility theory, see [13] and that the limit relationship (2.10) is not dissimilar 
to some estimates in [7]. 
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vVe will be particularly interested in the output signal 

(2.12) Xe,h(t; ~' zo) = (g, Ze,h(t; ~' zo)). 

COROLLARY 2.1. Under the conditions of the theorem above the limit 

t~~ xe,h(t; ~' zo) = Ee,h(~, zo) 

holds for all sufficiently small positive c and 

(2.13) 

The estimate (2.13) is the best possible in a natural sense: 
PROPOSITION 2.1. For each positive "' satisfying the estimate 

2?r2 

"'> h4 a (2.14) 

and each positive h, a there exists a positive c < ah, a function ~e(t), a 
vector ze E lR d and a sequence tn -l> oo such that 

(2.15) 

These assertions yield the following informal observations: 
• The eventual effect of small inductance is to cause the output signal 
xe,h(t; ~' zo) to decay to the constant signal Ee,h(~, z0 ), which for small c 
almost (but not quite) coincides with Eh(~). 
• The rate of this decay is quite slow, essentially similar to that of the function 

-27r2 (e/h2 ) 2 t e . 

• Notably, the exponent r(t) = -27T
2 
(:2 ) 

2 

t of e above depends quadra­

tically on the ratio c/h2
: two-fold decreasing of this ratio, by increasing 

the delay parameter h or decreasing the inductance parameter c, causes an 
approximate four-fold decreasing of lr(t)l. 

2.3. Rate of deforming of the stored signal. Recall some defini­
tions concerning the linear control system 

(2.16) z' = Az + fy(t), x = (g, z), 

see further details in [13]. 
A particular state z0 is defined to be controllable (on [0, 1]) if there exists 

a continuous control y(t), t E [0, 1] such that the solution z(t) of the initial 
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problem z' = Az + fy(t), z(O) = z0 satisfies z(1) = 0. The linear system 
(2.16) is completely controllable if given z0 there exists a continuous control 
u(t), t E [0, 1] such that the solution z(t) of the equation (2.16) satisfies 
z(1) = 0. A particular state z0 is defined to be unobservable if (g, z(t)) = 0, 
t E [0, 1]~ where z(t) is the solution of the differential equation z' = Az, 
z(O) = z0 . The linear system (2.16) is completely observable if no state is 
unobservable. 

The function 

(2.17) G(t) = (g, eAt f), t ~ 0, 

is said to be the impulse response of the linear system (2.16) . Its Laplace 
transform is W(p). By the definition, G(t) is a scalar function which under 
simple additional conditions [10] is known to be non-negative. Loosely speak­
ing, G(t) is the output of the linear system (2.16) corresponding to the input 
x(t) = b(t) and the initial condition z(O) = z0 , where b(t) is the Dirac impulse 
function. The importance of the function ( 2.17) is explained by the fact that 
the function y(t) = (g, z(t)), where z(t) is the solution of the initial problem 
z' = Az + fu(t), z(O) = 0, can be represented as y(t) = f~ G(t- s)u(s) ds. 

Let q(r), r ~ 0 be a continuous increasing function satisfying q(O) = 0. 
Consider the set Cq of the functions TJ(t), -1:::; t:::; 0, satisfying 

That is, Cq is the class of functions which are equi-continuous with the modu­
lus of continuity q. Denote by Cq,h the totality of the functions ((t) = TJ(t/h) 
with 77 E Cq. We denote by ~the h-periodic extension of a function ((t) E 

Cq,h· 
THEOREM 2. Suppose that the impulse response (2.17) is non-negative 

and the linear system (2.16) is completely controllable and completely observ­
able. Then there exist positive constants u,c1 > 0 and, for each b > 0, there 
exists c0 ( b) > 0 such that for c < uh, the estimate 

I · - I (c) 2 lzo :.._ ((O)f*l zc,h(t+Nh;(,zo)-((t-wc,h,N)f* ::;b+co(b) h N+c1 VN 

holds for ( E Cq,h, all positive integers N and all t E [-h, OJ, where 

(2.18) 

COROLLARY 2.2. Let the assumptions of Theorem 2 hold and let 

xc,h(t; (, zo) = {g, zc,h(t; (, zo)} 
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be an output of the system. Then there exist positive constants (]' ,c1 > 0 and, 
for each 8 > 0, there exists c0 (8) > 0 such that for c < (J'h, the estimate 

holds for all positive integers N and all -h ~ t ~ 0. 
This assertion concerns the rate of divergence of the signals 

xc,h(t + Nh; ~' zo), -h ~ t ~ 0, N = 1, 2, ... , 

from the initial function ~(t), rather than the rate of the flattening as in the 
previous subsections. The main features of this rate are: 

• The divergence diso(N) = maxtE[-h,oJixc,h(t + Nh; ~'~of*)- ~(t)l is of mag­
nitude Nc:. 
• Much of the divergence diSo(N) is due to phase delays: if we allow a cor­
rection wc,h,N of the phase of the signal, then the rate of divergence becomes 
that of an arithmetic progression with a difference of the order of ( c I h )2

• 

• In an experimental context, the phase delay can be most easily examined 
by introducing a signal ~(t) with a marked peak at the beginning of the 
interval [-h, 0). The phase shifts of the signal are then easily observed in 
the positive time interval t > 0. 

• The divergence maxtE(-h,oJixc,h(t + Nh; ~'~of*)- ~(t)l, which is due to the 
initial state discrepancy I z0 - ~ ( 0) f* I, fades with the rate, which is comparable 
with that of the function N- 112

, and which is uniform for small values of£ I h. 

3. Proof of Theorem 1. 

3.1. Outline of the proof. First of all we note that the investigation 
of system !vfc,h with the block diagram shown in Figure 2 can be reduced 
to the analysis of a similar system with h = 1, using the change of time 
t = Th. Thus it will be sufficient to consider the case h = 1. From now on we 
suppose that the equality h = 1 holds; we will also omit the bottom index h 
when appropriate: e.g. we use the notations xc(t; ~' z0 ), zc(t; ~, z0), Ee:(~), £ 
instead of x0 (t; ~' zo), zc,l(t; ~, zo), Ec,l(O, .C1. 

Denote by .C(d) the Banach space of integrable function z: [-1, 0) ~ 1Rd 
endowed with the norm llzllc = f~ 1 lz(s)l ds. We will also use the product 

space l = .C(d) x 1Rd of the pairs z = (z(·), zo) with the usual norm llzll.c = 
llz(·)llc + lzol· Introduce the auxiliary operator Se:: i ~ i which is given by 

(3.1) -l~t~O, 
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where ~(t) = (g, z(t)), z* = ze(1; ~' zo). 
Clearly, ze(t + N; ~' z0 ) = ZN(t), -1 ::; t ::; 0, where ZN(·) is the first 

component of the pair ZN = S;' (z( ·), z0), while z( ·)is any function, satisfying 
almost everywhere the identity (g,z(t)) = ~(t), -1::; t::; 0. We will also use 
the notation Ee(z) = Ee,1 ((g,z(·)) ,zo) or, what is the same by (2.8), 

and 

(3.3) 

(here, as always, f* is defined by the first equation (2.5): f* = -A-1 !). 
It suffices to prove the following statement instead of Theorem 1: 
LEMMA 3.1. Let a > 0 and (2.9) hold. Then there exists a positive 

O"('"y), "f < 21r2a, such that the limit 

(3.4) 

holds for all 

(3.5) c E (0, O"('"y)], 

The proof of this last assertion will be given in several steps. Firstly, in 
the next subsection we give a general description of the eigenvalues of the 
operator Se in Lemma 3.2; then we investigate in more detail the invariant 
subspaces of the operator Se and its adjoint corresponding to the eigenvalue 
1. Secondly, in Subsection 3.3 we consider the asymptotic behaviour of the 
eigenvalues of the operator Se, which are different from 1, as c-+ 0. Finally, 
in Subsection 3.4 we complete the proof of Lemma 3.1. 

3.2. Spectral analysis of the operator Se. We denote by S~ the 
complexification of the operator se. 

LEMMA 3.2. The non-zero eigenvalues ). of the operator s~ belong to 
the set of numbers 

(3.6) 

where w is a root of the characteristic equation 

(3.7) L(cw) = e-w M(cw). 
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This assertion can be extracted from the general theory [9], but it is 
convenient to give a straightforward elementary proof. 

vVe commence with a simple auxiliary statement. Denote by B the 
square d x d-matrix with the elements bij = fi9i· 

LEMMA 3.3. The characteristic polynomial of the matrix A + J..B is 
given by L- )..Jvf. 
Proof: By continuity reasons, it is sufficient to consider the case when the 
roots of the polynomial L - )..M are not roots of the polynomial L: 

(3.8) IL(p)l + IL(p) + J..M(p)l > 0 

for all complex p and all roots of the polynomial L - J..M are simple. 
Let p be a root of L- J..M: 

(3.9) 

By (3.8) 

(3.10) 

L(p)- )..Jvf(p) = 0. 

L(p) # 0 

and (3.9) can be rewritten as 

(3.11) J..M(p) = J..W(p) = 1. 
L(p) 

By (3.8) L(p)- J..M(p) = 0; thus the matrix A- pi is invertible and we can 
consider the non-zero vector 

(3.12) X=).. (pi- A)-1 f. 

Then (g, x) =).. (g, (pi- A)-1 f)= J..W(p) by (2.1), which implies 

(3.13) (g,x) = 1 

by (3.11). The vector (3.12) satisfies by the definition the equation px-Ax = 
J..f which can be rewritten as Ax+ J..f (g, x) = px by (3.13) and, further, 
as (A+ J..B)x = px. Thus, we have proved that each root of the polynomial 
L- J..M is an eigenvalue of the matrix A+ J..B. Since we have assumed that 
all roots of the polynomial L - J..M are simple, we conclude that L - J..M is 
the characteristic polynomial of A + J..B and the lemma is proved. 0 

Let us proceed with the proof of Lemma 3.2. Let z = (z(·), z0 ) be an 
eigenvector of the complexification S~ of the operator Sc: with a non-zero 
complex eigenvalue J... Then by definition, the function z(t), -1 ~ t ~ 0, 
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satisfies the differential equation cz' = Az + >.-1Bz = (A+ >.-1 B)z with 
the initial condition z(-1) = z0 , and the equation z(O) = >.z0 . That is, 
z0 = >.-1e(·4+>.- 1 

B)/e z0 . Thus ).. is an eigenvalue of the matrix e(A+.X-
1 
B)/e 

which in turn means that)..= evfe where vis an eigenvalue of A+>.-1B. By 
Lemma 3.3, v satisfies the equation L(v) = >.- 1 .1\f(v). After the substitution 
w = v/c the two last displayed formula come to the relationships (3.6), (3.7). 
So we have proved that every non-zero eigenvalue of the shift operator can 
be written in the form (3.6) where w is a root of the characteristic equation 
(3.7). The lemma is thus proved. 0 

The characteristic equation (3.7) has a zero root; therefore there is at 
least one eigenvector of the operator Se with the eigenvalue 1. 

LEMMA 3.4. The pair Z,. = (z*(·), A-1 f) with z*(t) = A-1 f is an 
eigenvector of Se with the eigenvalue 1. Any other eigenvector of the operator 
Se corresponding to the eigenvalue 1 is collinear with z*. 
Proof: Indeed, let z = (z(t), z0 ) E i be the corresponding eigenvector. Then 
z(t) satisfies the equation cz' = (A+B)z for -1 ~ t ~ 0, and z(O) = z( -1) = 
z0 . Thus z0 is an eigenvector of the matrix e(A+B)/e with the eigenvalue 1 
which means in turn that the vector z0 is annihilated by the operator A+ B: 
Az0 + f (g, z0) = 0. This implies immediately that z0 is collinear with A-1 f. 
The equality z(t) = z0 follows and we have proved that any eigenvector 
of the operator Se corresponding to the eigenvalue 1 is collinear with the 
pair z* = (z*(·), A-1 f) with z*(t) = A- 1 f. The fact that this pair z* is an 
eigenvector is a trivium. 0 

Introduce the functional 

(3.14) 

for z E f. 
LEMMA 3.5. The identity <Pe(Sez) = <I>e(z) is valid. 

Proof: Let z = (z(·), z0 ) E i and Sez = (y(·), y0 ). By the definition cy' = 
Ay + (g, z(t)> f. Or, because A is invertible, cA-1y' = y- (g, z(t)) f* where, 
as usual, f* = -A-1 f. Integrating we obtain 

Taking the scalar product with g we arrive at 
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since y(-1) = z0 , y(O) = y0 . Because of the equality (g,f*) = 1, see the 
second equality (2.8), this can be rewritten as 

and, further, 

The last displayed equality can be rewritten as <I>e(Y) = <I>e(z), by (3.14), and 
the lemma is proved. D 

CoROLLARY 3.1. The hyper-plane Es defined by .Pe(z) = 0 is invariant 
for the operator Se. If£ is sufficiently small, then the restriction SeiE• has 
no unit eigenvalues. 
Proof: By the previous lemma the hyperplane <I>e(z) = 0 is invariant for the 
operator Se. On the other hand, any non-zero eigenvector of this operator 
with the eigenvalue 1 is collinear to z by Lemma 3.4, and does not belong to 
this hyper-plane for all sufficiently small£. The corollary is proved. D 

3.3. Auxiliary estimates. Now we investigate carefully the roots of 
the equation (3. 7) which are different from 0. This subsection and Subsection 
4.2 below are in line with some simple fragments of the Lambert's W -function 
theory, that plays an important role in delay equations [15] and many other 
applications. 

LEMMA 3.6. Suppose that the assumptions of Theorem 1 are satisfied. 
Let "Yl > 0 satisfy the inequality 

(3.15) 

Then there exists an c( "Yd such that the real part ~w of each non-zero solution 
w of the characteristic equation (3.7) satisfies the inequality 

(3.16) 

for £ < c( "Yd. 
Proof: We first show that any non-zero solution of the equation (3.7) belongs 
to the left hand side of the complex plane. Let us rewrite the equation (3.7) 
as 

(3.17) 
M(cw) w 

L(cw) = e · 
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The function W(c:w) = 7,(~:;:} is analytic in the right hand side of the complex 
plane because the roots of the polynomial L(p) lie in the open left hand side 
of the complex plane. Additionally, IW(p)l ~ 1 on the imaginary axes and 
limlvl-oo IW(p)l = 0. Thus by the Maximum Modulus Principle, [12), Th. 

14.4, p. 296, l1l;:::} I ~ 1 in the right hand side of the complex plane. On the 
other hand, lew! > 1 in the right hand side. The last two inequalities show 
that the non-zero solutions of (3.17), and consequently (3.7), belong to the 
left hand side of the plane. 

Now let us prove that for small c:, each non-zero solution w of (3.7) 
satisfies (3.16). Suppose this assertion is false, in which case there exists 
En -? 0 with the corresponding solutions Wn satisfying 

(3.18) 0 > ~Wn > -')"lc~. 

We now show that the imaginary parts of the solutions Wn of (3.17) are 
bounded, in particular, 

(3.19) 

for large n, where ')"2 will be constructed below and ~w denotes the imaginary 
part of a complex number w. 

Denote Un = WnEn· The estimate (3.18) takes the form 

(3.20) 

The numbers Un satisfy the equation 

(3.21) L(u) -u/e:n 
M(u) = e · 

The real parts ~Un converge to zero by (3.20) and by the estimate (2.9) we 
arrive at the relationship 

(3.22) lim Un = 0. 
n-->oo 

Thus to prove (3.19) it suffices to establish the estimate 

(3.23) 

for large n, providing that (3.22) holds. 
By Taylor's expansion of the function H(u) = L(u)/M(u) at 0 

H(u) = H(O) + H'(O)u + 4H"(O)u2 + O(u3
). 
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By inspection, 

H(O) = 1, H'(O) = a1- b1, H"(O) = 2 [(a2- b2)- (a1- b1)b1] 

and a= (H'(O)f- H"(O) > 0 by assumption. Therefore, by (3.22), for small 
u, 

I~H(u)l::::: IH'(O)II~ul- 0 (l~ul 3 + l~ut) 

and 

I~H(u)l;::: 1- ~ H"(O) Pul
2

- 0 (l~ul 3 + l~ul). 

So 

and, finally, 

(3.24) IH(u)l2
;::: 1 +a l~ul 2 - 0 (l~ul 3 + l~ul) 

by (2.7). 
The relationships (3.24), (3.20) and (3.22) result in 

I £( Un) I 1 10.< 12 (IO< 13 3) (3.25) M(un) ;::: 1 + 2a ~Un - 0 ~Un +en . 

On the other hand, 

by (3.22). By the inequality (3.20) we can further write down 

(3.26) 

From (3.25), (3.26) and (3.21) we get 1 +~a l~unl 2 ~ 1 +'"'f1e~ +0(l~unl3 +e!). 
Solving this inequality for Punl2 we get 

I()< 12 < 2'"Yl 2 0 (10.< 13 3) ~Un _~en+ ~Un +en , 

which proves (3.23) for each '"Y2 satisfying J2'"'fl/o: < '"Y2 < 27r for sufficiently 
large n. The set of '"Y2 satisfying the last inequality is not empty, because 
J2'"Yda < 21r by (3.15). Thus (3.19) is proved. 
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We complete the proof as follows. Any limit point of the sequence Wn 
should be a solution of the limit equation 1 = e-w, that is should be of the 
form 27rik with an integer k. Taking into account the estimate (3.19) for 
<Swn above, we conclude that the sequence Wn converges to 0. Note that the 
solutions Wn should satisfy the equation 

(3.27) F(w,en) = 0 

where F(w, e)= ft<~:) -e-w. The function F is smooth and F~(O, 0) = 1 =I 0. 
Therefore by the implicit function theorem ([4], pp. 482), the equation (3.7) 
has a unique small solution w(e) for all small e and, in particular, a unique 
small solution for all en with large n. On the other hand, w = 0 satisfies 
(3.27) for any e, and therefore Wn should be zero for all en with large n. This 
yields a contradiction with the left side of the inequality (3.18). 

This proves that for small e each non-zero solution w of the equation 
(3.7) satisfies (3.16). 0 

Lemmas 3.6 and 3.2 imply 
COROLLARY 3.2. Let 'YI > 0 satisfy the inequality (3.15). Then there 

exists e('Y) such that the eigenvalues of the operator Se IE· satisfy the estimate 
I-AI< e-'ne

2
, 0 < e ~ e('Y1). 

3.4. Completion of the proof. We will fix a positive 'Y satisfying the 
first inequality (3.5), that is ''f < 21r2a. Clearly, Se is a compact operator 
in l. Therefore, its spectrum consists of its eigenvalues and of the point 0 
(which also could be an eigenvalue). By Lemma 3.2 the set of eigenvalues 
coincides with the set W( e) of roots of the characteristic equation. Thus, by 
Corollaries 3.2 and 3.1 the spectrum o-(Se) of the operator Se consists of the 
two disjoint sets {1} and {-X E o-(Se): I-XI< 1}. Moreover, by Lemma 3.4 and 
Corollary 3.1 the space l can be decomposed into a direct sum l = E 1 ffi Es, 
where E 1 is the one-dimensional subspace of elements which are collinear 
with z* = (z*(·), f*), whereas the hyper-plane Es is defined by the equation 
<I>e(z) = 0, and the functional <I>e is defined by (3.14). The projector onto E 1 

along the hyper-plane Es is then given by 

(3.28) 

On the other hand, <I>e(Z:.) = <I>e(z*(t), f*) can be rewritten as 
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where the first equation holds by (3.14) and the second one by the second 
equation (2.8). On the other hand, (g, A-2 f)= -~V'(O) whereas -l~V'(O) = 
a1- b1 by (2.2). By the last two equalities <I>.o(z*) = 1 + c:(a1 - bt). Thus, by 
(3.14) 

That is, (3.28) can be rewritten as 

(3.29) 

by (3.2). 
Clearly, SeiEs is a compact operator. Therefore, its spectrum consists of 

its eigenvalues and of the point 0 (which could also be an eigenvalue). Thus 
by Corollary 3.2 there exists c:1 ( ry1) such that 

with ry1 = ('"Y + '"Yo)/2. Therefore, there exists an equivalent norm II · lie, 
0 < c:::; c:1('"Y1), onEs in which the operator S.o!Es contracts with a factor 

(3.30) 

(see Proposition 9.6, [5], p. 83). The estimate 

holds for each z = (z(t), z0 ) E E. Taking into account (3.29), (3.30) and the 
linearity of the operator S.o we arrive at 

This estimate implies the estimate (3.4) immediately, since the norms II ·lie 
and II · liz are equivalent. Lemma 3.1 is proved and so is the theorem. 0 

4. Proof of Theorem 2. 

4.1. Monotonicity of the operator Se. We recall that complete con­
trollability is equivalent to the requirement that the system of vectors 

(4.1) J, Af, ... 'Ad-1 f 
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is linearly independent, whereas complete observabillity is equivalent to the 
requirement that the system of vectors 

(4.2) AT (AT)d-1 g, g, ... , g, 

where AT denotes the adjoint matrix, is linearly independent. This assertion 
is the famous Kalman Criterion for complete controllability and complete 
observabillity, see further details in [13]. 

Recall that a closed convex set lC C JRd is a cone if together with any 
point u it contains the ray B( u) = {AU : A ;:::: 0} and, on the other hand, 
v, -v E lC implies v = 0. 

Denote 

(4.3) lC = conv {y E lRd: y = AeAtf,O :S A,t < oo}. 
LEMMA 4.1. lC is a cone [10] in JRd and A-1 f belongs to the interior of 

/C. Additionally, 

(4.4) eAtJC C lC - ' t;:::: 0, 

and 

(4.5) (g, z) ;:::: 0, z E /C. 

Proof" Let us show that lC is a cone in lRd: that is we show (a) that lC is 
a closed convex set lC c JRd, (b) that together with any point u it contains 
the ray B(u) and, (c) that on the other hand, v, -v E lC implies v = 0. The 
properties (a) and (b) follow immediately from (4.3). It remains to show 
that v, -v E lC implies v = 0. Let us denote by E the following subset of 
IC: E = {z E lC : -z E IC}. Clearly Eisa linear subspace in JRd. Further, 
by the definition E is invariant with respect to the operator eAt, t ;:::: 0. Since 
A = fteAtit=o, the linear space E is also invariant for A. Therefore there exists 
a non-zero eigenvector p E E of the complexification A* of the operator A; in 
particular, A*p = Ap, ... A~-1p = Ad-1p for some complex number A. On the 
other hand, (g,p) = 0 follows from (4.5) which has been established at the 
beginning of the proof. Thus (g, Aip) = 0, j = 0, 1, ... , d- 1. This can 

be rewritten as ( ( AT)
1 g,p) = 0, j = 0, 1, ... , d- 1. This contradicts 

the hypothesis that the linear system is completely observable. 
Let us establish that the cone lC has some interior points. Let us sup­

pose the contrary. Then there exists a non-zero vector q which satisfies the 
equation 

(4.6) 
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for all t 2:: 0. The equation (4.6) implies (q, Ake~Hf) = 0, k = 0, 1, 2, .... 

Therefore ( q, Ak !) = 0, k = 0, 1, 2, .... That is, the vectors j, Af, ... , Ad-l f 

are linearly dependent and, by the Kalman Criterion the system (2.16) is not 
completely controllable. 

Let us show that the vector f* = -A - 1 f belongs to the interior of JC. 
To this end it suffices to mention the formula A-1 f = - f0

00 eAt f dt and to 
make use of the linear independence of the vectors ( 4.2) which has been 
mentioned at the beginning of this section. The inclusion ( 4.4) follows from 
the definition of JC and the inequality ( 4.5) follows from the assumption that 
the impulse response is non-negative. The lemma is proved. 0 

Denote by C the Banach space of continuous functions z : [ -1, OJ __, lR d 

with the usual norm and designate by C the corresponding product space 
C = C x 1R d. Denote by iC the cone in .C defined by 

iC = {(z(·), zo): z(s) E JC, -1:::; s:::; 0, zoE JC}. 

LEMMA 4.2. The operator Se: is monotone with respect to the cone iC in 
the sense that the inclusion 

(4.7) 

holds. 
Proof: Let z = (z(·), z0 ) E IC. Denote Se:z by fj = (y(·), Yo). We should prove 
the inclusion (y(·), y0) E JC. By the definition y(O) = y0 , thus it suffices to 
establish the inclusion 

(4.8) y(s) E JC 

for any s E [-1,0]. 
By the definition y(t) = eA(t+l)/e: z0 + ~ f~ 1 eA(t+l-s)fe: f (g, z(s)) ds. The 

inclusion eA(t+l)/e:zo E JC, -1 :::; t :::; 0, follows from (4.4), whereas the 
inclusion : f~ 1 eA(t+l-s)fe: f (g, z(s)) ds E JC, -1 :::; t :::; 0, follows from 
(4.4) and (4.5). The last three displayed formulas imply (4.8) and the lemma 
is proved. 0 

Denote by C the set of pairs z = ( z( ·), z0 ) E .C where the first co­
ordinate is a continuous function. We endow this space with the norm 
llzll = lzol + maxtE[-1,oJiz(t)1. Let Be be the corresponding unit ball: Be = 
{ z E C: llzllc:::; 1} and let 2;.. be defined as usual by (3.3). The number 

~ = min {.X 2:: o :Be ~ ( .Xz*- iC) n ( -.XZ:.. + iC)} is finite by Lemma 4.1. 
On the other hand, $(z*) = z* by Lemma 3.4. 
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Thus, Lemma 4.2 implies the following assertion. 
CoROLLARY 4.1. The inequality jjs:' (z) lie :::; ~llzllc holds for all posi­

tive integers N. 

4.2. Estimates. LEMMA 4.3. Let k be a positive integer. Then for 
small c > 0 there exist eigenvalues Ae:,k = ew~.k of the operatorS~ with the 
approximations 

(4.9) 

and with corresponding eigenvectors Ze:,k = (ze:,k(t), fe:,k) where 

(4.10) 

and Ze:,k(t) = ew~.kt fe:,k, -1 :::; t < 0. 
Proof: To show that there exists a function We:,k with the required properties 
we will investigate the solutions We:,k of equation (3.7) which are close to 
w* = 21rik. By definition these solutions satisfy the equation F(w,c) = 0 
with F(w,c) = J)(s~)- e-w. Since the relationships 

(4.11) F(w*,0) = 0, 

hold, the implicit function theorem is applicable. That is, for small € there 
exists a unique solution We:,k = wk(c) which is close tow*. The relationships 
w' (0) - - F;(w*,o) and 

k - F~(w*,0)' 

F~(w*, O)wZ(O) = -F~w(w*, O)w~(0)2 - 2F~6 (w*, O)w~(O)- F;~(w*, 0) 

are valid ([4], pp. 483). Evidently, F;(w*, 0) = (a1 - bi)w*, that is, w~(O) = 
-(a1- b1 )w* = -27rik(a1 - b1). Thus we have proved that the characteristic 
equation (3.7) has roots We:,k = wk(€) with the approximate representation 
iwe:,k- 21rik (1- (a1- b1)c)l :::; O(c2

). Formula (4.10) is correct for small 
€ by (2.9). It is a straightforward calculation to verify that the numbers 
Ae:,k = ewe,k are the eigenvalues of S~ with the corresponding eigenfunctions, 
and the assertion of the lemma follows. 0 

Now we give a 'decomplexified' version of the previous lemma. De­
note by f;,1, f;;: the real and imaginary parts of the vector ( 4.10): J;,k = 
SR.fs,k, f;;: = <sfs,k· Note immediately the limits 

(4.12) 

which follow from (4.10). Denote further 

(4.13) zre (t) = e1Rw.,kt ( .rre cos (<sw kt) - .rim sin (<sw ·. kt)) s,k Js,k s, Js,k s, ' 
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(4.14) zim(t) = e~w.,kt (fre sin (Sw t) +Jim cos (Sw t)) c,k c,k c,k c,k c,k 

where wc,k are the same as in Lemma 4.3. Denote now ~;,ek(t) = (g, z;~k(t)), 
and ~;:k(t) = (g, z;:k(t)). 

COROLLARY 4.2. Let k be a positive integer and wk(c-) be as in the 
lemma above. Then the estimates 

(4.15) 

(4.16) 

hold where the ck are constants independent from c and N. 

Proof: Let :i;,lc = (z;~k(t),z;,ek(o)), ~:k = (z~:k(t),z~:k(O)) and let z;~k,N,z~J.N 
be the first components of the pairs S:' z;ek, S:' ~k· Then the equalities 

' ' 

zre (t) = e~w.,k(N+t) (Jre cos (Sw k(N + t)) - fi~ sin (Sw k(N + t))) c,k,N c,k c, c,k c, ' 

hold as the projections of the corresponding complex equalities (S~)N zc,k = 
eWe,kN zc,k which reflect the fact that the pairs Zc,k are the eigenvectors of 
S~ with the eigenvalues ew•,k, see the lemma above. The last two displayed 
equalities and the estimates ( 4.9) imply the inequalities 

On the other hand, by the definition 

re (t) _ _ re (t + N ere ;re) zc,k,N - "'c '<.,c,k' Jc,k ' 

and the corollary is thus proved. 0 
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4.3. Constant c0(8). LEMMA 4.4. For each 8 > 0 there exists a con­
stant c0 ( 8) such that for sufficiently small c, the estimate 

holds for -1 ::; t ::; 0 for all positive integers N. 
Proof: Let the function ~(t) and the number 8 > 0 be given. 

The periodic extension ~(t), -oo < t < oo of the function ~ can be 
uniformly approximated (see, for instance, [11], p. 230, Example 2) with an 
arbitrary precision by a trigonometric polynomial of the form: 

K(o) 
( 4.18) TJ(t) = a0 + L ak cos (21rkt) + /3k sin (21rkt) . 

k=l 

Below we will fix a function ( 4.18) which satisfies the estimates 

( 4.19) -1 ::; t ::; 0, 

(4.20) -1 ::; t::; 0, 

where 81 = 4~, and ~ is the same as in Corollary 4.1. Then, for small c > 0, 

we have llzo- ztllc < ~ where zo = (~(t)f*, ~(O)f*), zt = (zt(t), z"(O)) with 
the choice 

K(o) 
( 4.21) zt(t) = ao + L akz;~k(t) + (3kz!7c(t), 

k=l 

see (4.13), (4.14). By (4.12) limt-o lzt(t) -ry(t)f*l = 0, and the inequalities 
(4.19), (4.20) imply 

( 4.22) -1::; t::; 0, 

(4.23) -1 ::; t ::; 0, 

for sufficiently small c > 0. Therefore, the estimate ( 4.20) implies 

( 4.24) lis: zo - s:r ztiic ::; ~' 
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for all positive integers N, by the equality /51 = 4~, and Corollary 4.1. 
By the definition of the operator Sc:, the first component of the pair 

s:rzo coincides with the function Zc; (t + N;f,,f.(O)f*), -1:::; t:::; 0. Therefore 
(4.24) implies lzc:,N(t)- zc: (t + N;f.,f.(O)f*) I<%, -1:::; t:::; 0, where Ze:,N(t) 
denotes the first component of the pair s:- z". Using again the definition of 
the operator Sc: we can rewrite this as 

{; 
lzc:(t + N, f,r;, fc:)- Zr; (t + N; f., f.(O)f*) I < 4' 

where f.c:(t) = (g, zc:(t)), fc: = Zr;(O). 
On the other hand, by Corollary 4.2, the estimate 

-1:::; t:::; 0, 

-1:::; t:::; 0, 

with a suitable c1 (/5) holds as a linear combination of the estimates (4.15) 
and (4.15), see (4.21). (Actually, the constant c1 (/5) above depends on K, 
but the number K was defined in turn by /5). Additionally, 

-1 ~ t:::; 0, 

by (4.22), (4.21) and the estimates (4.9). 
The last three inequalities result in the estimate 

with co(/5) = c1(8) + c2(/5) for all positive integers N. The last estimate coin­
cides with ( 4.17) and the lemma is proved. 0 

4.4. Constant c1 • LEMMA 4.5. Under the conditions of Theorem 2, 
for each 8 > 0 there exists a constant c1 > 0 such that the estimate 

(4.25) -1:::; t:::; 0, 

holds for sufficiently small c; for all positive integers N. 
Proof: Firstly we consider the functions 

Xc:,N,(t; zo) = (g, Zc: (t + N; 0, zo)), -1 :::; t:::; 0, N = 1, 2, .... 

LEMMA 4.6. For each 82 > 0 there exists a constant c2 > 0 such that for 
sufficiently small c;, the estimate lxc:,N(t; z0 )1:::; D2 + c2 lzoi/VN, -1:::; t:::; 0, 
holds for any given positive:. integer N. 
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Proof: Denote G0 (t) = (g, eAt!), t 2: 0, and 

Gn(t) =lot Gn-1(s)Go(t- s) ds, n = 1,2, .... 

The third moment p 3 = J0
00 t3G0 (t) dt exists and the corresponding char­

acteristic function cp( () = f0
00 ei(tG0 (t) dt belongs to L2 by the Plancherel 

identity. Thus Theorem 1, p. 533, [8] is applicable and the functions 
.jnGn((t- nM)CJ.jn) with lvf = f0

00 tGo(t) dt, CJ
2 = fo=(t- lvf) 2Go(t) dt, 

approach uniformly the normal density N(t) = Jh-e-~t
2

• 
In particular, 

[1/£ c [1/£ 
(4.26) 'TJN(t) := lo 6(s)GN-1(t- s) ds ~ VN lo l6(s)i ds 

with a suitable c, where 

(4.27) 6(t) = (g,ze(tc:;O,zo)), t E [0, 1/c:]. 

Taking into account the explicit formula6(t) = eAtz0 , t E [0, 1/c:], we observe 

J~/£ l6(s)i ds ~ IA- 1 I·Izol and (4.26) becomes 

(4.28) n ·(t) < c IA-
1
I·Izol 

•tN - ffi 

Below, c2 is a fixed constant satisfying c2 > c IA-1 j. Clearly, for each N 
the function (.e,N(t, z0 ) = (g, ze (tc: + (N- 1)/c:; 0, z0)), t E [0, 1/c:], is close 
to the convolution ( 4.26): 

(4.29) 

for any given 82 , N for all sufficiently small c > 0. Thus the function (.e,N(t, z0 ) 

satisfies the estimate l~e,N(t, zo)l:::; 62 +c2lzol/vN, t E [0, 1/c:J, for any given 
82 , N for all sufficiently small c > 0. This means, in turn, that the function 

Xe,N(t,zo) = (g,ze(t+N;O,zo)) =(.e,N(-t/c:), -1 ~ t < 0, 

satisfies the analogous estimate 

(4.30) -1 ~ t ~ 0, 

again for any given 82 , N for all sufficiently small c > 0. 
Lemma 4.6 is proved. 0 
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Denote ze,N(zo) = ze (N; 0, zo), N = 1, 2, .... 
COROLLARY 4.3. There exists a constant c3 > 0 such that for each 

63 > 0 the estimate ize,N(zo)l :S: 63 + c3lzoi/VN, -1 :S: t :S: 0, holds for 
sufficiently small c for any given positive intege·r N. 
Proof: Indeed, by the definition 

ze,N(zo) = eAt/e ZN-1 + ~ /_
0

1 
Go( -s/c:)xe,N-1(s, zo) ds. 

The influence of the first addend is negligible for sufficiently small positive c 
and the result follows from Lemma 4.6 above. 0 

Denote ze,N(t; zo) = ze (t + N; 0, zo), -1 :S: t :S: 0, N = 1,2, .... 
COROLLARY 4.4. There exists a constant c4 > 0 such that for each 

64 > 0 the estimate 

64 izol 
(4.31) ize,N(t; zo)l :S: 2 + C4 ffi' -1 ::; t ::; 0, 

holds for sufficiently small c: for any given positive integer N. 
Proof: By the definition, 

ze,N(t, zo) = eAtfe ZN-1 + /_
0

1 
Go((t- s)/c:)xe,N-1(t, zo) ds. 

Now the assertion follows from Lemma 4.6 and Corollary 4.3. 0 

Let us complete the proof of Lemma 4.5. We define c1 = c4 , where c4 

is the same as in the previous corollary. Denote by N* a positive integer 
satisfying 6 /(3/:l) + cdzol/ JN: < 6 /2!:1, where !:l is the same as in the 
previous subsection. By Corollary 4.4 the estimate 

6 lzol 
(4.32) ize,N(t; zo)l :S: 

3
/:l + c1 JN' -1 :S: t :S: 0, 

holdsforsmallc:forN::; N*. Inparticular,lze,N.(t;zo)l < 6/2!:1, -1 :S: t :S: 0, 
holds for small c:. Therefore, by Corollary 4.1 

6 
(4.33) ize,N(t; zo)l < 2' -1 :S: t :S: 0, N > N*. 

On the other hand, by ( 4.32) 

8 izol 
(4.34) lze,N.(t; zo)l < 2 + c1 ffi' 

holds for sufficiently small c:. Combining the last two estimates we arrive at 

8 lzol 
lze (t + N; 0, zo)l :S: 2 + c1 ffi' -1 :S: t :S: 0, N = 1, 2, ... , 

which coincides with ( 4.25), and the lemma is proved. 0 
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4.5. Completion of the proof. The function zc(t; f,, z0 ) is by the def­
inition linear with respect to the last two arguments. In particular, 

Zc (t + N; f,, zo) = Zc (t + N; f,, f.(O)f*) + zc (t + N; 0, Zo- f.(O)f*). 

Therefore, the assertion of Theorem 2 follows from lemmas 4.4 and 4.5. The 
theorem is proved. 0 

5. Proof of Proposition 2.1. It suffices to consider the case h = 1. 
Let w0 and z€, 1 be the same as in Lemma 4.3, that is ew•· 1 is the eigenvalue 
of the operator s~ with the approximation 

and with the corresponding eigenvector z€,1 = (z€,1 (t), !c,1) where !c,1 = 
(c:w€,1!- A)-1 J, and zc,1(t) = z€,1ewe,It, -1 ~ t < 0. We will investigate 
the function w€,1 more carefully. Denote w* = 27ri. By definition the equation 
F ( w€,1 , c:) = 0 holds. Since F~ ( 27ri, 0) = 1, the implicit function theorem is 
applicable, as was mentioned earlier in Subsection 4.2. In particular for small 
c: > 0 the function w(c:) = w€,1 satisfies the relations 

and 

([4), pp. 483). That is, w'(O) = -w*(a1 - b!) and 

w"(O) = -2(a2- b2)c:2 + 2(a1 - b1)b1c:2 + 1 

+ ( 2(a1 - b1)- 4(a1 - bi)b1 w;) (a1 - b1)w* 
2 2 +2(a2- b2)w*- 2(a1- b1)b1w*. 

The leading two terms of the Taylor expansion for the function w€,1 = w(c:) 
gives the approximation of )Rw€,1 

)Rw€,1 ~ [ -(a2- b2)c:2 + (a1- b1)b1c:2 + 1/2] (a1 - bi)2w;c:2 

- ( a2- b2)w;- (a1- br)b1w;) c:2
• 

and hence, 
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Now we complete the proof of the proposition. Let CJ > 0 and "f satisfy 
the estimate "f > 2i2 o:. Then, by the last equation, we can choose c; E (0, CJ) 

satisfying 'Y + Rw.:,l > 0. It remains to define 

~.:(f) = (g, Rz.:,le3?w~.lt)' 

and z.: = Rf.:,l· The proposition is proved. 0 
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Abstract. 
The control circuit for single link manipulator limited with constraints of the program 

type is considered. Program constraints come in a natural way to robot motion analysis 
as demands - programs that have to be performed during manipulation. Their mathe­
matical representations are differential equations, not always linear and of the first order. 
Nonintegrable constraints called nonholonomic ones are considered and program motion 
equations for a single link manipulator have been obtained. Program motion that has 
been defined is desirable from the practical point of view but it can be unstable or does 
not ensure desirable speed of robot hand responds. Sufficient conditions for the almost 
surely asymptotic stability and exponential 2-stability (with a priori given speed) of a 
control system under various random perturbations have been obtained. 

Key Words. Stability of stochastic-functional differential equations, robotic hand 
control, program constraints 
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1. Program constraints formulation. Program constraints come from 
designing, technological, operating or other kinematical or dynamical require­
ments put upon a manipulator system motion. For example we need a veloc­
ity or acceleration of a certain link point i.e. its gripper to fulfill additional 
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conditions like being a given time function. Such conditions, necessary dur­
ing operating, generate constraints which mathematical representations are 
differential equations, not always linear and of the first order [3]. Nonholo­
nomic constraints are often considered but they are linear the most often and 
of the first order [2]. Nonholonomic constraints influence the modification 
of dynamical analysis of a system because the number of degrees of freedom 
changes. 

When additional constraints are put upon a system we can say about 
program motion. This program has to be realized during a system motion 
and when it can be formulated in the form of differential equations that the 
most often happens we have to consider both program and other constraints, 
coming from dependent coordinates for instance. To get our considerations 
clear we assume that the program and program motion are formulated in 
independent coordinates that means we do not have to deal with position 
constraints coming from the dependent coordinates selection. Program for­
mulation and calculations of program coordinates, i.e. coordinates that fulfill 
program equations, do not provide an information about the stability of the 
program motion. 

The paper deals with mathematical modelling and stability conditions 
of systems limited with nonholonomic constraints of the program type. So­
lutions of program motion equations give a system dynamical characteristics 
need to fulfill the prescribed program but they do not give a receipt for con­
trol conditions. One has to select them and the question here is what control 
force or torque u should be applied to a system. In the paper values of con­
trol parameters are found. The program constraint equation example shown 
herein is simple enough to show the influence of program constraints upon a 
system stability. 

Independent coordinates form the smallest set of coordinates necessary 
to describe a system. They do not generate additional constraint equations 
so the only constraints we have to consider are program ones. Mathematical 
formulation of program constraint equations depends on their order; it means 
on the order of the highest coordinate derivative in it. We can require a 
system link or a point on it to move according to a certain trajectory that is 
written as: 

(1) 

where qi, i=1, ... , k are independent coordinates and the number a of these 
equations is less than k, and k - a is the number of degrees of freedom. 
Equations (1) are geometrical program constraints and their mathematical 
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formulation is the same as for other geometrical constraints but the interpre­
tation is different. They indicate an extra requirement that has to be fulfilled 
during a system motion. The same way we formulate kinematical program 
constraints that are the first order ones: 

where the number b of constraint equations is less than k. Again, the math­
ematical formulation of the first order program constraints is the same as 
kinematical ones known from classical analytical mechanics but their mean­
ing is different. We add additional requirement put upon a system. Generally, 
program constraints of the higher orders can be formulated in the following 
way: 

(2) 

where p is the order of the constraints, {3 is the number of constraint equations 
and f3<k. Constraint equations can be nonlinear but differentiating them 
with respect to time we can always get equations linear to the highest order 
of one of variables. One has to pay for it and to handle equations of higher 
orders then the given ones. The concept of equations (2) is helpful in the 
general formulation of kinematics and dynamics of constraint systems and it 
is used here to be free of nonlinear constraint equations [3]. 

2. The control problem formulation. We consider one-link manip­
ulator made of an ideally rigid homogeneous rectilinear rod of length l and 
mass !vf (see [1]). One end of the rod is connected with the fixed base via 
an ideal cylindric hinge 0, while at the other end a weight (to be moved) of 
mass m is made fast. The control torque u is applied to the axis of hinge 0. 

A 

y 

X 

Figure 1. 

If we would like to control the angle q (q = q1 or q2 ) with the aid of stan­
dard proportional differential (PD) regulators the control rule has the form 
u(t) = -bq(t) - cq(t), where b, c > 0. But in the process of its realizations 
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several nonlinearities, aftereffects and random noises may appear due to the 
nonlinearities and hysteresis phenomenon of the executive mechanisms and 
the inaccurate locating of the system's coordinate. The last one demands to 
account all the states of the system from the start of the job up to the mo­
ment t. Moreover we should take into consideration the random nature of the 
measurement. Taking into account all the above we consider the following 
correction of proportional-differential regulators control law (see [10, 11, 12]) 

(3) 

where g, CJ are some nonlinear functionals such that for each t 2: 0 g(t, •, •) 
and CJ(t, •, •) are mappings from C([O, tJ, R) x C([O, t], R) toR, Wt is a white 
noise, q~ = {q(s), s E [0, t]} and q~ = {q(s), s E [0, t]}. 

For some robot hand tasks when high speed of its response is not de­
manded, it is sufficient to find control parameter values which guarantee 
asymptotic stability of a system model only. But for some services like 
high speed pressing or in robot-based punching manufacturing, one needs 
to construct control u that supplies its high accuracy, response speed and 
insensitivity to the wide range influence of disturbances. 

The paper is organized as follows: in section 3 we find the values of con­
trol parameters b, c > 0 and the restrictions on the noises g and CJ that ensure 
the almost surely asymptotic stability of correspondent control system. In 
section 4 we find the values of control parameters b, c > 0 and restrictions 
on the noises g and CJ (which are a little bit stronger then in section 3) that 
ensure desirable speed of exponential 2-stability. More precisely, for given 
numbers T, c: > 0 the mathematical expectations of q2 ( t) and q2 ( t) are less 
then c: for all t 2: T. 

For the investigation of the problems mentioned above we use Lyapunov­
Krasovskii functional method (see [1, 5]), integral and differential inequali­
ties, some approaches from the theory of random process, especially crite­
rion of convergence of nonnegative semimartingales (see [6]). The similar 
approach was used in [10], [11] and [12] for the investigation of the plane 
motion of robot hand without any constraints. 

3. Program motion formulation. The system we consider is con­
strained with program type constraints. We put task requirements upon the 
gripper. In the example under consideration, we demand that the velocity 
components of the end effector - the gripper A have to be connected by the 
give time function f(t). This requirement is simple enough to illustrate the 
problem that has been stated but other requirements can be put upon a 
system in the same way. 
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Independent coordinates chosen here are shown in Figure 1: q1 and q2 

are the two angles describing motion of the link. The equation of program 
constraint formulated for the considered case has the following form: 

(4) (h = Q2 f(t). 

\Ve get the nonholonomic constraint equation of the first order. 
Program motion equations derivation method is based on so called gener­

alized program motion equations that has been developed for nonholonomic 
systems [3, 4]. For the one link manipulator and constraint equation (4) 
program motion equations are: 

(5) 
(~i\1 + m) l2 [f(thh + q2] + ( m + ~) glsinq2 = u 

Ql = j(t) Q2· 

To simplify next considerations we eliminate dependent coordinate q1 from 
equations (5) and get: 

M1l2 [1 + j 2(t)] q2 + M1l2 j(t)j(t)q2 + M2glsinq2 = u, 

where: 

Let: 

(6) F(t) 1 F (t) = j(t)j(t) p. (t) M2g 
= M1 f2 [1 + J2(t)]' 

1 
1 + J2(t)' 2 = M 1l [1 + J2(t)] 

and then 

(7) 

Equations (7) can be written for q2 = y as the following system: 

(8) iJ=z 
z + F1(t)z + F2(t) siny = F(t)u. 

We consider u in the form 

(9) - b (t 0 ,0) ( 0 0) . u - - y - cz - g 'Yt' '-'t - (}' t, Yt 'Zt Wt. 
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Then (8) takes the following shape 

(10) if= z 

i = -(F1 +cF)z- bFy- F2 sin y- Fg(t, yf, zf)- Fu(t, yf, z~)UJt. 

vVe assume that there exist constants Ci > 0, i=1, ... , 7, such that for 
t E [0, oo) 

I) c1 < F(t) < c2, F'(t) < c3; 

II) c4 < F1(t) < cs, F{(t) < c6; 

III) F2(t) ~ c7. 

From conditions I)-III) it is seen that F(t) < c2 and c2 = (M+;m)l2 • If 
F(t) > c1 it means that Pis bounded. F1(t) > c4 indicates that f(t)f'(t) > 
0. All the above conditions can be satisfied for some ci > 0 if k1 < f < k2 , 

k3 < f' < k4 , k5 < f" < k6 for some ki > 0. As it was stated, we looked 
for stability conditions for a system limited with constraints ( 4) and motion 
according to program do not have to be stable, in general. Program that 
secures stable motion has to be selected. From the practical point of view it 
is possible to assume we have chosen f ( t) function the way that it fulfills the 
above conditions. 

Now we put restrictions on noises: 
00 

IV) jg(t, yf, zf)j
2 
~ J (iy(t-s)f2 + iz(t-s)l2) dR(s), 

0 
00 

ju(t,y~,z~)j
2 

~ J (iy(t-s)l2 + iz(t-s)l2
) dR(s), 

0 
where R(s) is a nondecreasing function, R(oo)-R(O) = R, we mean y(s) = 
z(s) = 0 for s < 0. 

As Lyapunov-Krasovskii functional we consider the following expression 

W(u, v, t) = 2F(t)bu2 + v2 + [v + (F(t)c + F1(t))u] 2 

00 t 

(11) + H j dR(s) J (ly(r)l 2 + lz(r)l2
) dr, 

0 t-s 

where y and z are the solutions of (10) and constant H will be chosen later. 

It is not difficult to see that system (10) has a unique solution (for every 
initial conditions y0 , z0 ), if functions g and u satisfy Lipschitz or Osgood type 
conditions with respect to the second and third variable (see, for example, 
[8, 9]). 
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4. A.s. asymptotic stability conditions for the control system. 
First of all we estimate the stochastic differential dW(y(t), z(t), t) along the 
trajectories of system (10) using Ito formula (see [6]) and conditions I)-IV): 

dW(y(t), z(t), t) :::; { z2 [2(Fc + Fl)- 4(F1 + cF) + RH] 

+ y2 [- 2bF(Fc+F1) + 2F'b 

+2(Fc+F1)(F'c+F{) + RH + 2F2(Fc+Fl)] 

+ yz [4Fb + 2(Fc + F1)2 - 4bF + 4F2- 2(Fc + F1)2 

+ 2(F'c + F{)] + [4z + 2(Fc + F1 )y][-Fg( ... )- Fer(. .. )] 

(12) - H J[y2(t-s)+z'(t-s)jdR(s)+2F2
<r2 }dt + dm,. 

0 

Here 

t 

(13) mt = j[4z(s) + 2(F(s)c + F1(s))y(s)]F(s)o-( ... )dws 
0 

is a martingale (see [6]). We estimate 

[4z + 2(Fc + F1)y] [-Fg( ... )- Fo-( ... )] 
00 

:::; 16F2z2 + 4(Fc + Fr)2F 2y2 + 2F2 j[y2(t-s) + z2(t-s)]dR(s); 
0 

00 

2F2o-2 :::; 2F2 j[y2(t-s) + z2 (t-s)JdR(s); 
0 

yz( 4F2 + 2(F'c + F{)) :::; 2F:jy2 + 2z2 + y2(F'c + F1f· 

Therefore (12) can be rewritten in the form 

dlVt:::; {- z2[2(Fc + F1)- RH- 1] 

- y2 [ 2bF2c + 2bF2c + 2bF F1 - 2F'b 

- 2(Fc + F1)(F'c + F{)- 2F2(Fc + Fr)- 4(Fc + F1)2 

- (F'c + Fr)2
- 2F:j- RH] 

(14) + (4F2-H) J[y2(t-s) + z'(t-s)[dR(s) }dt + dm,. 
0 
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Due to I) 4F2 < 4~ and we can take 

H = 4c~ + 1. 

Due to 1)-11) we have 

We put 

(16) 

where P2(c) is some polynomial of the second order with positive coefficients. 
Then the coefficient of y2 in (14) can be estimated from the below by poly­
nomial P3 (c) of the third order with the positive coefficient of c3 . Inequality 
(14) takes the form 

(17) 

where P1(c), P3 (c) are positive for sufficiently large c. Applying the lemma 
of the convergence of nonnegative semimartingale (see [6, 7, 10, 11, 12}) to 
(17) and acting in the same way as in [7), [10), [11] or [12] we obtain 

(18) P{ lim y(t) = lim z(t) = o} = 1, 
t-+oo t-+oo 

where P{ •} is the probability measure. 
Thus we have proved the theorem. 

THEOREM 1. Let conditions I)-IV) be fulfilled and control parameters 
b and c are large enough, then solution of system (10) is a.s. asymptotically 
stable. 

COROLLARY 1. For every constraints satisfying conditions I)-III) cor-
,r . 'tl-. .j. 1 z· d l. -'. 1 1. f"t" '. l respon ... mg program motwn wz n conhro, rea zze vy propo·nzonw-azJJeremza 

requlators is asymptotically stable for every noises in the control system, sat­
isfying conditions IV) and sufficiently large control parameters vdues b and 
c. 

5. Exponential 2-stability for the control system. In this section 
we show that control parameters b and c can be chosen so large that solution 
of system (10) is exponential 2-stable with sufficiently large speed. In this 
case we reinforce a little the restrictions IV) on the disturbances. This will 
give us ability for given numbers T, c make E[y2(t) + z2 (t)] less then c 
for t 2: T. It means that robot hand belongs to €-neighborhood of the 
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equilibrium in time T. It ensures arbitrary desirable speed of robot hand 
response if c: and T are small enough. 

Below we give definition of exponential 2-stability from [1]. 
DEFINITION 1. Trivial solution of system {10) is called to be exponential 

2-stable if for some positive constants A1 , A2 the following equality is true 

At first we suppose there are no any noises in control system: g( ... ) = 
a( ... )= 0. Let 

\ll(u, v, t) = 2F(t)bu2 + v2 + [v + (F(t)c + F1(t))ut. 

Using I)-III) we can estimate 

w(u, v, t) ~ [2c2b + 2[c2c + cs)2]u2 + 3v2 

(19) ~ [2c2P2(c) + 2(c2c + c5)
2]u2 + 3v2 

= P2(c)u2 + 3v2 ~ g~c) [P1 (c)v2 + P3(c)u2]. 

Here P2 (c), P1(c) are some polynomials of the second and first order respec­
tively with positive leading coefficients; P1(c), P2 (c) are defined in (15) and 
(16). It is not difficult to see that (19) is true for sufficiently large c. 

Carrying the calculations similar to that of the previous section (see (12) 
and ( 14)) and taking into account f = a = 0, ( 17) and ( 19 ), we get that 
differential of w(y(t), z(t), t) along the trajectories of system (10) satisfies the 
following inequalities 

(20) 

From (20) we have 

eP1(c)twt ~ W0 ~ P2(c)y2(0) + 3z2(0), 

y2(t) + z2(t) ~ Wt ~ e-Pl(c)two ~ e-Pl(c)t(P2(c) + 3)(y2(0) + z2(0)), 

that is we get exponential2-stability of solution of system (10) for A1 P2 (c)+3, 
A2 = P 1 (c) according to the definition 1. 

We suppose that the noise exists and the following conditions are fulfilled 
00 

V) lg(t, y~, z~)~ 2 ~ a(t) f (ly(t-s)l 2 + !z(t-s)n dR(s), 
0 
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00 

jO"(t, y~, z~)j 2 ::; a(t) I (y 2(t-s) + z2(t-s)) dR(s), 
0 

where R is from IV) and a(t) = e-(PI(c)+l)t. 
Acting in the same way as in (12) and (14) for sufficiently large c we get 

00 

d'IIt::; -P1 (c)'IItdt +4F2a(t) l(y2 (t-s) + z2 (t-s))dR(s) + dmt, 
0 

where mt is defined in (13). From (17) we can get the following estimations 

It is not difficult to see that 

00 

d[eP1(c)t-q,t]::; 4c~ I (y2(t-s) + z2(t-s))dR(s) eP1(c)ta(t)dt + eP1(c)tdmt. 
0 

Therefore, using (21) we have 

t 00 

::; EWo + 4c~ I I ( Ey2(r-s) + Ez2(r-s) )dR(s)eP1 (c)r a(r)dr 
0 0 

00 

::; EvV0 + 4~ · EW0R I e-sds 
0 

::; (P2 (c) + 3) (Ey2 (0) + Ez2(0) )(1 + 4c~R), 

(22) E[z2 (t) + y2 (t)] 

::; eP1 (c)t (P2 (c) + 3) (1 + 4c~R) ( Ey2(0) + Ez2(0) J. 

We have got exponential 2-stability of solution of system (10) for A1 

(g(c)+3)x (1 + 4c~R) and A2 = P1(c). 
THEOREM 2. If conditions I)-III), V) are fulfilled for every c:, T > 0 

we can find control parameters values b and c such that Eq~(t) + Eq~(t) ::; c: 
fort ~ T, where q2 is the solution of equation (7). 

REMARK 1. The presence of function a(t) in the conditions V) seems 
unnatural by the first view. But we need to have it only for producing our 
mathematical calculations. In real life time t varies on finite interval [0, T0] 

and for every actual situation of robot operation we can estimate number T0 
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(for example T0 ::::; 24 hours, or T0 ::::; 1 hour, or T0 ::::; 30 min). Therefore 
we really need the fulfillment of condition V) only for t E [0, T0] with suffi­
ciently small h instead of a(t), h ::::; e-(Pl(c)+l)To. Fort > T0 we can demand 

everything we want, it is only the mathematical abstraction. 

6. Conclusions. The problem of control motion of a robotic hand lim­
ited with constraints of the program type has been considered. Program 
constraints have been included to dynamic system considerations and motion 
stability were investigated. It has been proved that one can choose program 
conditions satisfying stability conditions that is not obvious because any pro­
gram can be thought or demanded but not each of them can secure stable 
motion of a system. It has also been shown that if constraints satisfy certain 
conditions and control system is constructed on proportional-differential reg­
ulators, we can find control parameters b and c for every noises in the control 
system satisfying also certain limitations. It is important from the practical 
point of view because noises can play the role of real disturbances here that 
can occur in real robot working environment. 

Moreover for given c:, T > 0 we can find control parameter values band c 
that ensure the transition of gripper in c:-neighborhood of equilibrium state 
in timeT. 

Program motion equations are nonlinear, disturbances that appear in 
control, depend on previous states of robot hand and contain random com­
ponent. To prove stability (and exponential stability) and to find control 
parameter values b and c for providing it we construct special Lyapunov­
Krasovskii functional and estimate its stochastic differential. Using some 
methods of theory of stochastic process (as lemma on convergence of non­
negative semimartingale, stochastic differential inequalities) we obtain our 
results from this estimation. 

In this paper we consider only disturbances having linear estimation of 
its growth and continuous type noises, which are expressed by Ito integral 
with respect to the Wiener process. Some developing of the work is intended, 
namely to relax this restrictions in particular to consider discontinuous noises. 
Investigations of another type constraints with motion simulation is also 
desirable. 

REFERENCES 

[1} V.Afanasiev, V.Kolmanovskii and V.Nosov, Mathematical Theory of Control Systems 
Design, Kluwer Academic, Dordrecht, 1995. 

[2J E.J.Hang, Computer Aided Analysis of Mechanical Systems. VoU. Basic Methods, 
Allyn and Bacon, Boston, 1989. 



450 A. RODKINA, X. MAO AND E. JARZEBOWSKA 

(3] E.Jarzebowska, The Problem of Small Oscillations of Mechanical Systems with Arbi­
trary Order Nonholonomic Program Constraints, Nonlinear Vibration Problems, 
24 (1991), 141-160. 

(4] E.Jarzebowska, On a Problem of Control Motion of Mechanical Systems Limited with 
Nonholonomic Constraints of the Program Type. Proc. of the 1-st Int. Symp. on 
Math. Models in Automation f1 Robotics, (1994), 377-380. 

[5] V.Kolmanovskii and A.Myshkis, Applied Theory of Functional Differential Equa­
tions, Kluwer Academic, Dordrecht, 1998. 

(6] R.Liptser and A.Shiryayev, Theory of Martingales, Kluwer Academic, Dordrecht, 
1989. 

[7] A.Melnikov and A.Rodkina, Martingale Approach to the Procedures of Stochastic 
Approximation, Frontiers in Pure and Applied Probability, TVP /VSP, Moscow, 
1 (1993), 165-182. 

[8] A.Rodkina, On Existence and Uniqueness of Solution of Stochastic Differential Equa­
tion with Hereditary, Stochastics, 12, N3+4 (1984), 187-200. 

[9] A.Rodkina, On Regularity of Solutions of Stochastic Equations for Hereditary Sys­
tem, Avtomatika i Telemehanika, 5 (1984), 87-96. 

(10] A.Rodkina, Controlled Motion of a Rigid Body, Proceedings of 2nd ENOC, Prague, 
(1996), 195-197. 

[11] A.Rodkina, On Rate Control of One-Link Robot- Manipulator, Proceedings of Nolta-
96, Kochi, Japan, (1996), 176-180. 

[12] A.Rodkina and X.Mao, Stabilization of Single-Link Manipulator-Robot under 
Stochastic Perturbations, Problems of Nonlinear Analysis in Engineering Sys­
tems, 2(8), (1998), 28-41. 



FUNCTIONAL 
DIFFERENTIAL 
EQUATIONS 

VOLUME 6 
1999, NO 3-4 
PP. 451- 470 

GLOBAL ATTRACTOR FOR STRONGLY DAMPED 
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Abstract. We show the uniformly bounded ness of the global at tractor for large strong 
damping and obtain a more precise estimate of the upper bound of the Hausdorff dimen­
sion of attractor for strongly damped nonlinear wave equations. The obtained Hausdorff 
dimension decreases as the strong damping grows for large damping, which conforms to 
the physical intuition. 
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1. Introduction. We consider the strongly damped nonlinear wave 
equation 

(1) Utt- O!~Ut- ~U + h(ut) + f(u) = g, X E 0, t > 0 

with the homogeneous Dirichlet boundary condition 

(2) u(x, t)lxEofl = 0, t > 0 

and the initial value conditions 

(3) u(x, 0) = uo(x), Ut(X, 0) = U1(x), X E 0, 

where U = u(x, t) is a real-valued function On 0 X [0, +oo), 0 is an open 
bounded set of Rn (n EN) with a smooth boundary 80, a> 0, g E £ 2(0), 
f(u), h(v) E C1(R; R), D( -6) = HJ(O) n H2(0). 
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Let G(s) = J; f(r)dr. We make the following assumptions on functions 
G(s), f(s) and h(s): 

(i) 

(4) lim inf G~) > 0, 'i/s E R. 
jsj-+oo S -

(ii) There exist two constants c1 > 0, c2 > 0 such that 

(5) 1
. . f sf(s)- c1G(s) > 

0 1m Ill , 
jsj-+oo s2 -

'i/sE R, 

I , I ) . { 0 < p < oo, n = 1, 2, 
(6) f (s)] ~ c2(1 + siP w1th 0 ~ p < n~2 , n ~ 3, 'i/s E R. 

(7) 

(iii) For every M > 0, there exists c3 = c3(M) such that 

IIJ'(u1)- f'(u2)11L(HJ(O),L2(f!)) ~ c3llu1- u2WS1 

for any u1, u2 E HJ(O), lludl ~ M, llu2ll ~ M, where 61 > 0, II· II and 
II· IIL(HJ(n),L2(n)) denote the norms of HJ(O) and L(HJ(O), L2(0)) (the space 
of linear continuous operators from HJ ( 0) into L 2 ( 0)), respectively. 

(iv) There exist two constants (31, (32 such that 

(8) 

where >.1 is the first eigenvalue of the operator-~ on 0 with condition (2). 
(v) For every M' > 0, there exists c4 = c4 (M') such that 

(9) 

for v1, v2 E L2(0), lv1l ~ M', lv2l ~ M', where 62 > 0, I · I and II · 
IIL(L2(f!),L2(f!)) denote the norms of L2(0) and L(L2 (0), L2(0)) (the space of 
linear continuous operators from L2(0) into £2(0)), respectively. 

Two examples of equation (1) with conditions (4)-(9) are the perturbed 
sine-Gordon equation (f(u) = sin u) [3] and the perturbed wave equation 
occurring in quantum mechanics (f(u) = luiPu) [5}. 

The asymptotic behavior of solutions for strongly damped nonlinear wave 
equations has been studied by many authors [1 ,2,4,6-9}, of those, Ghidaglia & 
Marzocchi [1) proved the existence and finiteness of the Hausdorff dimension 
of the global attractor for (1)-(3). However, the obtained results showed 
that the bound of the global attractor and the upper bound of dimension of 
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attractor in the phase space are both directly proportional to the coefficient 
a of strong damping for large a and tends to infinity as a --+ +oo, which is 
hard to comprehend intuitively. S. Zhou [9] obtained an upper bound of the 
Hausdorff dimension of the at tractor for the following equation with Dirichlet 
boundary condition 

(10) 
&2u &u 
[)t2 - 0:~ 0t - ~U = f( U, Ut) + g, X E 0, t > 0, 

when the strong damping a is not very small and the function f ( u, v) satisfies 

(11) { 
f(u, v) E C1(R x R; R), !f(u, v)! ~ ko + k1lul 60 , 

!h(u,v)l ~ k2, !h(u,v)! ~ k3, \l(u,v) E R x R, ' 

where ki 2': 0, i = 0, 1, 2, 3, 0 ~ 8 < 1, i.e., f(u, v) is sublinear in u, uni­
formly bounded in v and its partial derivatives in u and v are both uni­
formly bounded. The system (10)-(11) does not include the equation (1) 
with conditions (4)-(9) because the function h(v) and f(u) in (1) do not 
satisfy conditions ( 11). 

For system (1)-(3) with the conditions (4)-(9), by applying a similar 
technique in [9], i.e., by introducing a new norm in the phase space (which is 
equivalent to the usual norm), and by carefully estimating and splitting the 
positivity of the linear operator in the corresponding evolution equation of 
the first order in time, we will point out that the global attractor is uniformly 
bounded for large strong damping a in the phase space and show that the 
upper bound of the Hausdorff dimension of attractor decreases as a grows for 
large a. In the linear damping, i.e., h(s) = [3s, the Hausdorff dimension of 
at tractor is uniformly bounded for large a and bounded f3. The main results 
are as follows. 

Let E = HJ(O) x £ 2 (0), E 0 = (HJ(n) n H2 (0)) x HJ(n) and endowed 
them with the usual norms II·IIHl x£2 and II·IIEo, then the solution of system 

0 

(1)-(3) with conditions (4)-(9) exists globally and uniquely, and defines a 
continuous semigroup of mappings: 

S(t) : { u0, ui} --+ { u(t), ut(t)}, E--+ E 

for any t 2': 0. Moreover, the semigroup {S(t), t 2': O}possesses a global at­
tractor B 0 in E [3-4). 

(12) 

Suppose 

'Yl = 4 + (o:Al + /31)0: + ~' ')'2 = (o:.\1 + {31)0: + ~' 
(]' = AI ot,B1 

'Yl ±v''Yl/2 
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(13) 
a ~ ao > 0, -ao.A1 < fJ1 ~ fJ2 < +oo, 

(3 > lfJ I+ min{.!. o.Xl+.Bl} 
2 - 1 o' 2 ' 

Consider the global attractor B0 for system (1)-(3) with assumptions 
(4)-(9), we have 

THEOREM 1. There exists a positive constant M0 = M0 (ao, (Jb fJ2) such 
that 

II~PIInJx£2 = (l\7ul2 + lvl2)
112 ~ Mo, Vrp = (u, v)T E Bo, 

and if (31 ~ 0, then the Hausdorff dimension dn of the global attractor B0 in 
E satisfies: 

(14) dn :o; min { m m E N, 2. ~ ,~o-1 aa-} 
L..... /\J ~ k2 . 

m i=1 

where 

(15) { 

(n-2)p-2 ....L < p < _4_ n > 3 
P - 2 ' n-2 - n-2' - ' 0- 2 

0, n = 1, 2 or 0 ~ p ~ n-2 , n ~ 3, 

and k = k(a0 , (31, fJ2) is a positive constant which is independent of a. 
THEOREM 2. If {13) holds and p in {6) satisfies 

(16) 

then 

(17) 

{ 

0 ~ p < oo, when 
0 ~ p ~ 2, when 

p = 0, when 

dn ~minfmlmE N, 
l I 

n = 1,2, 
n=3, 
n ~ 4, 

'r/s E R, 

in which k = k(a0 , (Jb (32 ) is a positive constant which depends on a0 , (J1 and 
(32 • If p = 0 ('rln EN), then k = c2 . 

THEOREM 3. If a~ a 0 > 0, the function h(s) is linear, i.e., h(s) = (Js, 
and p in (6) satisfies (16}, then for (J ~ 0, there exists a positive constant 
M0 = M 0(a0) which is independent of a and (J such that 

and for 0 ~ (J ~ (30 < +oo, there exists a positive constant k0 = k0(a0 , ,80) 

such thatthe Hausdorff dimension dn of the global attractor B 1 in E satisfies: 
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(19) du S min { m m E N, 

in which 

(20) cro = a when fJ1 = fJ2 = (3. 

If p = 0 (Vn E N), then for any a > 0, (3 ~ 0, 

(21) 

In above theorems, { >..i : 0 < >..1 :::; >..2 :::; · · · :::; Am :::; · · ·} are the eigen­
values of operator -6. with the homogeneous Dirichlet boundary condition 
on D. 

It is easy to see from Theorem 1 that the upper bound of dH in the right 
side of (14) is a decreasing function of a and remains small for large strong 
damping a because the quantity ~~ in (14) increases as a grows and 

(22) lim ~ ~ )..~0- 1 = 0 
m-+oo m £..... J ' 

j=1 

l
. aa 1 
liD -k2 = -k2 > 0. 

a-++oo 2 

Therefore, the Hausdorff dimension dH in (15) is uniformly bounded for large 
a. Similarly, it is not difficult to see that the dimension in (19) is uniformly 
bounded for large a and bounded (3. 

2. Preliminaries. It is well known that the operator A = -L~.is self­
adjoint, positive and linear from D(A)-?L2(D), the eigenvalues {>..i}iEN of A 
satisfy: 

Let 

(u,v)= /nutdx, Juj=(u,u)f, Vu, vEL2 (D), 
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((u,v)) = fn \lu · \lvdx, !lull= ((u,u))~, Vu, v E HJ(n), 

and 

(Yb Y2)E = (Au1, Au2) + (vb v2), Vyi = (ui, vif E Eo, i = 1, 2, 
0 1 

IYIEo = (y, y)}.;0 , Vy = (u, vf E Eo 

denote the usual inner products and norms in L2 (r2) , HJ(n), E and E0 , 

respectively. 
We define a new weight inner product and norm in E = HJ(n) x L2 (r2) 

as 
1 

(23) (<p, '1/J)E = J.t((ui, u2)) + (v1, v2), !'PIE= (<p, cp)}.; 

for any <p = (ubv1f,'lj; = (u2,v2f E E, where ft is chosen as 

(24) 
_ 4 + (a-\1 + ,81)a + ~ 

J.t- 4 + 2(a-\1 + ,81)a + ~. 

Since 

(25) 

the norm I·IE in (23) is equivalent to the usual norm I·IH1xL2 in E. 
0 

It is convenient to reduce (1) to an evolution equation of the first order 
in time, Let 

(26) <p = ( U 1 V )T, V = Ut + €U, 

where c is chosen as 

(27) 
c = 4 + 2( a-\1 + ,BI)a + ~' 

then the system (1)-(3) can be written as 

(28) 
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where 

(29) 
F(<P)=( -f(~)+g ), 

( 
c:u- v ) 

H(<P) = Au- c:(aA- c:)u + (aA- c:)v + h(v- c:u) · 

LEMMA 1. Suppose 

For any <P = (u, vf E E1, 

where CJ is as in (12). 
Proof. Since E1 is dense in D(A) x D(A), we only need to prove the 

Lemma for any <P = (u, vf E D(A) x D(A). 
For any <P = ( u, v)T E D(A) x D(A), by (8), (23), (28), (29), the Poincare 

ineuality and J.L = 1- c:a, we have 

(31) 

By (12) and (26), elementary computation shows 

thus, 

By (31), 

(H(<P), <P)E 2 CJ!<PI~ + ~ llvW + ~1 lvl 2 for <P = (u, v)T E D(A) x D(A). 

The proof is comlpeted. 0 
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3. Boundedness Of The Global Attractor. Under the assumptions 
(4)-(9) in section 1, we have known that for every g E L2(0), for all T > 0 
and u0 E HJ(O), u 1 E L2(0), there exists an unique function u(t) such that 

satisfying (1)-(3) which defines a continuous semigroup of mapping: 

S(t) : { uo,ud f-+ { u, Ut}, E ~ E, Vt ~ 0 

and the semigroup {S(t), t ~ O}possesses a global attractor Bo , and the 
upper bound of the Hausdorff dimension of attractor B 0 is finite (see e.g. [3J 
for detail). However, the bound of the global attractor B 0 and the upper 
bound of dimension of B 0 in E are both directly proportional to the strong 
damping a for large a. Moreover, these two bounds tend to infinity as 
a ~ +oo, which does not conforms to the physical intuition. 

In this section, we will point out the uniformly boundedeness of the 
global attractor B 0 in E for suitable large a. It is easy to see that the 
semi group 

(33) Se(t): (uo,u1 +c-uo)T ~ (u(t),ut(t) +c-u(t)l,E ~ E, 

defined by (28) has the following relation with S(t) : 

(34) 

in which Re : { u, v} ~ { u, v + c-u }is an isomorphism of E. 
By (34), the semigroup {Se(t), t ~ 0} possesses a global attractor B = 

ReBo, B and B 0 have the same dimension. So, we only need consider the 
equivalent system (28). 

LEMMA 2. If {13} is satisfied, then the global attractor B is included in 
the bounded ball B0 of E, B0 = BE(O, \1'2M0), centered at 0 of radius -/2M0 , 

where Mo = Mo(ao,/Jb fJ2) is independent of a. 
Proof Write G(u) = f0 G(u)dx. Let <p(t) = (u(t),v(t)? be a solution of 

the system (28) in which v(t) = ut(t) + c-u(t) with the initial value <p(O) = 
(uo, u1 + c-uof E E, by (32), 

(35) <p(t) E C(R+; HJ(n)) x [C(R+; L2(0)) n L2 (0, T; HJ(O))], VT > 0. 

Taking the inner product(·, ·)E of (28) with <p =(y,vf, we find 

(36) 
1 d 2 -2 dt[i'PIE + 2G(u)] + (H(<p), 'P)E + c:(J(u), u) = (g, v). 
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By the assumptions (4), (5) and the Poincare inequality, there exist two 
positive constants k1, k2 2: 0 such that 

(37) 

(38) 
- 1 2 1 

(u, f(u))- c1G(u) + gllull + k2 2: 0, "'u E H0 (0.). 

By (12) and (27), tc: < rJ < c:. By (37), 

- 12 - 1 2 1 
(39) G(u) + gllull + k1 2: 0, G(u) + 

32
c
1

llull + k1 2: 0, VuE H0 (0.). 

Let 

(40) y = I'PI~ + 2G(u) + 2k1 2: by(23)(25)(39) 2: li'PI~ 2: o. 

Write G(u) = G(u) + 3iqlluW + k1 2:0. By (30), (38), (40), we have 

(H(<p), <p)E + c:(f(u), u) 

41 
2 Htllull2 + lvl2) + c:c1G(u)- ~;lluW- c:(k2 + c1k1) + a>-v·rh lvl2 

( ) 2 i2 c:B[I<pl~ + 2G(u) + 16~1 lluW + 2kl]- c:(k2 + c1k1) + a>-1:;-rb lvl2 

2: tPY- c:(k2 + c1k1) + a>.l2+fh lvl2, 

where 

(42) B ( ) { 
1, when c1 2 1

1
6, 

=min 1, 16c1 = 16c1, when 0 < c1 < l6 • 

By (36) and (41), 

d 1 I 2 -d y + py:::; A (3 gl + 2c:(c1k1 + k2), 
t a 1 + 1 

By the Gronwall inequality, 

(43) 
l'PI~ :::; 4y(t) 

< 4y(O)e-pt + 4 ( 1 IYI2 + 2e(qkl+k2)) (1- e-Pt). 
- (a>.1 +J3l)p p 

and 

(44) lim su I 12 < 4 ( 1 I 12 + 2c:(clk1 + k2)) = lv/2 
t-++oo p <p E - (a A 1 + (31) p g p o:,/31./32' 
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where 

(45) 

From (43), (44) and (45), we complete the proof. 0 

4. Differentiability Of The Semigroup. In this section we assume 
that the functions f(u), h(v) satisfy the conditions (4)-(9) in section 1. To 
estimate the Hausdorff dimension of the global attractor of the semigroup 
S(t), t ~ 0 in E, we need to consider the differentiability of S(t), t ~ 0. 

LEMMA 3. Consider the linearized equation of (1} with initial-boundary 
conditions: 

X E !1, t > 0, 
(46) U(x, t)ixean = 0, t > 0, 

{ 

Uu + aAUt +AU+ h(ut)Ut + f'(u)U = 0, 

U(x, 0) = ~' Ut(X, 0) = TJ, X En, 

where u = u(x, t) is a solution of {1}-{3}. Then {46} is a well-posed problem 
in E, the mapping S(t) defined by {10} is Frechet differentiable onE for any 
t > 0 , its differential at <.p = ( u0 , u1 f is the linear operator on E : ( ~, TJ f f-+ 

(U(t), V(t)?, where U(t) is the solution of {46}. 
Proof It is clear from the assumptions in the first section that the 

problem ( 46) is a well-posed problem in E. We first consider the Lipschitz 
property of S ( t) on the bounded sets of E. Let 

<.po = (uo, ui)T E E, 'Po= <.po + (~, TJf = (uo + ~' u1 + TJf E E 

with 

(47) 

and 

S(t)<.po = <.p(t) = (u(t), Ut(t)f, S(t)'Po = [p(t) = (ii(t), iit(t)f. 

By the hypothesis (6), the mean value theorem and the Sobolev embed­
ding theorem 



ATTRACTOR FOR WAVE EQUATIO:-.JS 461 

where 

(49) 
1 1 v 1 1 

-+-=1, vE[O,l], 
q q' q 2 

, 
n 

for every r > 0, there exists a positive constant c5 = c5 ( r) such that 

(50) IA6-t f(u)l ~ cs, VuE HJ(O), I lull ~ r, 

where 

(51) 
{ 

4-(n-2)p _L < < _4_ n > 3 
1: - 4 ' n-2 - P n-2' - ' u - 1 2 

2, n = 1, 2 or 0 ~ p ~ ~, n ~ 3 

and pis as in (6). From (38), 

(52) 

By (47), (50) and (52), there exists a constant C() = c6(ro) > 0 such that 
G(u0) ~ c6• By (40), 

(53) 

By ( 43) and (53), there exists a constant r' = r' ( ro) such that 

(54) lcp(t)IE ~ r', I<P(t)IE :::; r', Vt ~ 0. 

The difference 

(55) 

satisfies 

(56) '1/Jtt + aA'I/Jt + A'lj; + h(ut)- h(ut) + f(u)- f(u) = 0. 

For n = 1, HJ(O) c V"'(O) c £ 1(0) c n-1(0) c (HJ(O))', there exists 
a constant cs = cs(r') > 0 such that 

IA-t(j(u(t))- f(u(t))]l ~ c'lf'(u + '1?1(u- u))(u- u)l£1 
(57) ~ ~ f0 (1 + iu + '1?1(u- u)IP)(u- u)dx 

~ cslu(t) - u(t)!, Vt ~ 0. 

where '!91 E (0, 1 ). 
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For n = 2, HJ(n) c Lq(n) c n-1(0.) c (HJ(n))', q > 0, there exists a 
constant dg = c~ ( r') > 0 such that 

:::; c'if'(u + 1?1(u- u))(u- u)ld IA-i[f(u(t))- f(u(t))]i 

(58) 
2 

:::; ~ (In[(1 + iu + 1?1 (u- u)iP)(u- u)]~dx) 3 

:::; c~iu(t)- u(t)i, Vt ~ o. 

For n ~ 3, by (6), there exists a constant ~ = c9(r') such that 

IA-i[f(u(t))- f(u(t))]i :::; IA-i[f'(u + 1?1(u- u))(u- u)]i 
:::; if'(u + 1?1(u- u))(u- u)iL~ 

2n ~ 
:::; (In[(1 + iu + 1?1 (U- u)jP)(u- u)] n+2 dx) 2

n 

(59) 
By (8), 

(60) 

:::; cgiiu(t)- u(t)ii, \:It~ o, 

ih(ut)- h(ut)i = ih'(ut + 1?2(ut- ut))(ut- ut)i 
:::; ,82jut- Uti, 1?2 E (0, 1). 

Taking the inner product of (56) with '1/Jt = Ut- Ut in L2(fl), by (57), 
(58), (59), (60), we have 

t !(I'I/Jtl2 + 11'1/JW) + aii'I/JtW 
= ( -(h(ut)- h(ut) + f(u)- f(u)), 1/Jt) 
:::; ih(ut)- h(ut)II'I/Jtl + IA-t(f(u)- f(u))III'I/Jtll 
:::; ciO(I'I/Jtl 2 + II'I/JII2

), 

where c10 = c10(r') > 0, i.e., 

1 :t (I'I/Jtl 2 + 11'1/JW):::; 2clO(I'I/Jtl 2 + 11'1/JW), w ~ o. 

So, we have the Lipschitz property 

(61) 

Consider the difference()= u-u-U, with U the solution of the linearized 
system (46). Obviously, B(O) = Bt(O) = 0 and 

(62) Bu + aABt + AB = d, 
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d = j(u)- f(u)- f'(u)(u- u)- f'(u)O 
+h(ut)- h(fit)- h'(ut)(ut- fit)- h'(ut)et. 

463 

By the hypothesis (7) and (9), there exist two constants c11 (r'), c12(r') such 
that 

!f'(su + (1- s)u))- f'(u)IL(HJ(n),L2(n)) ~ cui1llu- ull'\ 'is E [0, 1]. 

and 

We observe that 

!f(u)- J(u)- J'(u)(u- u)l 
(63) = Ici !{f'(su + (1- s)u))- J'(u)}(u- u)!ds 

~ c14(r')llu- ulll+'\ 

lh(ut)- h(iit)- h'(ut)(ut- iit)! 
(64) = Jci !{h'(siit + (1- s)ut))- f'(ut)}(ut- Ut)!ds 

~ cls(r')liit- Utl 1+62, 

and 

(65) 

Taking the scalar product of each side of (61) with Bt in L2 (0), by (8), (63), 
(64) and (65), 

i.e., 

~%t(IBtl 2 + IIBW) + ai!Btll2 

= IBtl(c1411u- ulll+•h 
+c1sliit- utl1

+62
) + ,82IBtl2 + c16IIBII·IIBtll 

ft(IBtl 2 + IIBW) ~ c17(r')(IBtl2 + IIBW) 
+cls(r')(llii(t)- u(t)ll2+2•h + liit(t)- ut(t)l2+262 ), 

By the Gronwall's inequality and (61), we obtain 

IBt(t)l2 + IIB(t)W 
~ ~ec11t · J~(llu(t)- u(t)ll2+261 + liit(t)- ut(t)!2+262 )dT 
~ C19ec2ot · [(111!2 + II~W) 1+61 + (1171 2 + II~W) 1+62 ], 'it 2: 0, 
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where c19 , c20 > 0, that is, 

therefore, 

as ( E, TJ f ~ 0 in E. The proof is comlpeted. 0 

5. Proof Of Theorem 1. In this section, we will show that the Haus­
dorff dimension of the global attractor B0 of the semigroup S(t), t :::::: 0 asso­
ciated with the system (1)-(3) decreases as a grows, and complete the proof 
of Theorem 1. 

Since B (the global attractor of Sc(t), t:::::: 0) and B 0 (the global attrac­
tor of S(t), t :::::: 0) have the same dimension, we only need to estimate the 
Hausdorff dimension of the global attractor B in E, i.e., we only need to 
consider the system (28). To estimate the Hausdorff dimension of the global 
attractor B in E, we consider the first variation equation of (28) with initial 
condition 

(66) w' + H'(cp)w = F'(cp)w, w(O) = (E, TJf E E 

where w = (U, Vf E E and <p = (u, vf E Eisa solution of (28), 

H'( ) _ ( ci -I ) 
(
6

?) 'P- A-caA+c2I-ch'(v-cu)I aA+h'(v-cu)I-ci ' 

F'(cp) = ( - f~(u) ~ ) · 

It is easy to show from Lemma 3 that (66) is a well-posed problem in E, 
the mapping Sc(t) is Fnkhet differentiable onE for any t > 0, its differential 
at <p = (uo, u1 + cuof is the linear operator onE, (E, TJf ~ (U(t), V(t)f, 
where (U, Vf is the solution of (66). 

LEMMA 4. Consider the system (28}. Let <P denote a set of m vectors 
{ <P1, <P2, · · ·, <Pm} which are orthonormal in (E, I · IE)· If 

lint m (68) lim sup sup- l:)( -H'(cp(r)) + F'(cp(r)))<Pj(r), <Pi(r))EdT < 0, 
t-++oo ~CE 10EB t 0 j=l 

then the Hausdorff dimension of the global attractor B is less than or equal 
tom. 
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Proof This is a direct consequence of Theorem V. 3.3., equations (V. 
3.47)-(V. 3.49) of [5]. D 

LEMMA 5. For any orthonormal family of elements of(E, I·IE), (~j, TJif, 
j = 1,2,- .. ,m, we have 

m m m 

(69) L f.dv~jl2 :::; /Lv-1 L .\j-1 :::; 2 L x;-1) v E [0, 1). 
j=1 j=1 j=1 

Proof This is a direct consequenceof Lemma VI. 6.3 of [5] and (25). D 
LEMMA 6. Suppose the functions f(u), h(v) satisfy the assumptions 

(4)-(9). If (31 2: 0 and {13) holds, then the Hausdorff dimension dH(B) of 
the global attractor B for system {28} in (E, I·IE) satisfies 

(70) dn(B) S min{ m mEN, ~ ~ ,~o-1 au} 
L... /\) < k2 . 

m i=1 

where PoE [0, 1) is defined by {15}, k = k(a0 ,(31 ,(32 ) is a positive constant 
which is independent of a, u is as in (12}. 

Proof Let mE N be fixed. Consider m solutions 'l1 1, 'l12 , ···,'lim of (66). 
At a given timeT, let Qm(T) denote the orthogonal projection in E onto the 
space spanned by wl, w2, ... 'Wm· Let <I>j(T) = (~j, T/j)T E E,j = 1, 2, ... 'm, 
be an orthonormal basis of 

with respect to the inner product (·, ·)E and norm I·IE· 
Suppose 

(71) 

then fcp(T)IE :::; v0.lvfo (!Yfo is defined by Lemma 2). Similar to the proof of 
Lemma 1 and by f<I>iiE = 1, we have 

(72) 

where (J is as in (12). By (23) and (67), 

(F'(cp(T))<I>j(T), <I>j(T))E = (- f'(u(T))~j(T), T/j(T)) 
:::; IA-!j'(u(T))~j(T)I·IITJill 

(73) 

For n = 1, 2, similar to (57) and (58), we easily obtain that 

(74) 
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For n ~ 3,similar to (59), 

lA-~ f'(u(r))~i(r)J 
(75) 

~ d'lf'(u(r))~i(r)IL~ 
~ 

~ c; (In[(1 + ju(r)IP)~i(r)]n
2

+2dx) 2n 

~ c22(Mo)IA~Po~i(r)l, C22(Mo) > 0, Vr~ 0. 

where Po is as in (15). Thus, there exists a constant k = max{ c21 (M0), 
'- c22(Mo)}> 0 which depends on ao, /31, !32 such that 

(76) (F'(cp(r))<I>j(r),<I>i(r))E ~ klAtPo~Ar)l·llTJill, Vr ~ 0. 

Hence, by (69), (72) and (76), we have 

(77) sup f((-H'(cp) + F'(cp))<I>i, <I>i)E ~-mk2 (a~_..!_ f >.jo-1). 
<pEB i=1 a k m i=1 

If 

(78) 

then by (77), 

m 

sup I)( -H'(cp) + F'(cp))<I>i, <I>i)E < 0. 
<pEBj=1 

By Lemma 4, the proof is comlpeted. 0 
Combining with Lemma 2 and Lemma 6, we complete the proof of The­

orem 1. 

6. Proof Of Theorem 2. We suppose the conditions in Theorem 2 
are satisfied. In this case, Lemma 1 holds. 

LEMMA 7. For any initial value u0 , u1 E B, the solution of system 
{1}-{3} u(t) can be decomposed into u(t) = z(t) + w((t), where z(t) satisfies 

(79) Jtllz(t)lf2 + lzt(t) + cz(t)l 2 ~ 2M5 exp( -2u1t), Vt ~ 0. 

and w(t) satisfies 

(80) JtlAw(t)i 2 + llwt(t) + cw(t) W ~ c21 (ao, !31, !32), Vt ~ 0. 

where c21 (a0, /31, /32) is a constant, Jvfo is as in Lemma 2 and 

(81) 
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Proof. Let the initial values u0 E HJ(O), 11 1 E L2(0) such that 

(82) 

By (38), 

(83) 
G(u) ::; t[(f(u), u) + illuW + k2] 

::; tUJ(u)l·lul + illuW + k2], 'VuE HJ(n), 

By (6) and Sobolev embedding theorem, for every r > 0, there exists a 
positive constant c22 = c22(r) such that lf(u)l ::; c22, 'VuE HJ(n), llull ::; r. 
By (83) and (82), there exists a constant c23 = c23 (M0) > 0 such that 
y(O) ::; c23 (M0). By the absorbing property (44) of the semigroup S(t), t 2: 0, 
the solution of (28) <p(t) = (u(t),v(t))T in which v = Ut +cu satisfies: 

(84) l<p(t)l~ = JLiiu(t)W + lv(tW ::; c24(Mo), 'Vt 2: 0. 

where c24 (M0) is independent of a. 

(85) 

and 

(86) 

(87) 

Let u = w + z,where wand z satisfy: 

{ 

Wtt- a~Wt- ~w = b(t), 
w(O) = 0, Wt(O) = 0, 
b(t) = g- f(u(t))- h(ut(t)) 

{ 
Ztt - a~Zt - ~z = 0, 
z(O) = uo, Zt(O) = u1. 

Let 4> = (z, Zt + c1z)T, where c1 = 4;~t.:>. 1 , then (86) can be written as 

where 

(88) 

Similar to Lemma 1, we have that for any 4> = (z, z'f E E1, 
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where u1is as in (81). By (87) and (89), we obtain (79). It follows that 

Ut2:0,(u0 ,u1)eB{z(t), Zt(t)} 

is contained in a ball which tends strongly to zero. 
In the following, we prove that w(t) satisfies (80). Setting ( = A~w, 

c; = (t + c:1(, then (85) can be written as 

(90) 1/Jt + A11j; = B(t), 1/J = ((, c;f, B(t) = (0, Ah(t)f 

Taking the inner product (·, ·)E of (90) with 1/J = ((, c;)T, we have 

(91) 

By emdedding theorem and (6), (16), there exists a constant c25 (M0 ) > 0 
such that lb(t)i :S c25 (M0), Vt 2: 0. By (89) and (91), we find 

(92) :ti1/J(t)i1 + 2uli1/J(t)i1 :S c25 ~Io), Vt 2: 0. 

By the Gronwall inequality, (85) and (92), we obtain (80), where 

(93) 

The proof is comlpeted. 0 
Proof of Theorem 2. By the embedding theorem and (80), the continuous 

norm of w(t) is uniformly bounded with respect to a, i.e., there exists a 
constant c26 = c26 (a0,/J1,/J2) such that 

(94) iw(t)ic :S c26· 

Hence, for any u(t) E HJ(O) n B, ~(t) E HJ(O), we have 

1 

if'(u(t)))~(t)l :S c2 (j[1 + lz(t) + w(t)IPFe(t)dx) 
2

. 

For n = 1, 2, it is easy to see that lf'(u(t)))~(t)l :S c27(Mo)l~(t)1. For n = 3, 
by (6), (79), (94), the Holder inequality, (79), (94) and 0 :S p :S 2, 

lf'(u(t)))~(t)l2 :S c2s f[1 + z2 (t) + w2(t)]e(t)dx :S c29[11z(t)ll4 ll~(t)W 
+(1 + lw(t)lb)l~(t)l2] 

:S c3o(Mo)(e-4u1 tll~(t)W + l~(t)l 2 ), c3o(Mo) > 0. 
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So, by (73 ), we have 

(F'(<P(r))<I>i(r), <I>i(r))E = (-f'(u(r))~i(r), TJi(r)) 
~ lf'(u(r))~i(r)!11li(r)i 
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~ [c3o(Mo)(e-4u1 TII~i(r)ll 2 + l~i(r)l 2 ))t ·lTJi(r)l 
~ 2(~~C1~~1 )(e-4u1 TII~i(r)W + l~i(r)i 2 ) 

+a.\Hh 117i(r)l2. 
(95) 
Thus, by ll~i(r)W ~ 2 and (75), (95) 

If 

(96} _.!._ f: x:-1 < (a,\1 + fi1)u' 
m i=1 

1 c3o(Mo) 

then Qm < 0, that is, (17) holds. The proof of Theorem 2 is comlpeted. 

1. Proof Of Theorem 3. In this case, the equation (1) is 

Similar to the proof of the Theorem 2 where fi1 = fi2 = fi, we complete the 
proof of the Theorem 3. 
Acknowledgment: The author is grateful to Professor M. Sonis for his 
useful suggestion. 
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