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SECOND ORDER ACCURACY DIFFERENCE SCHEME FOR
APPROXIMATE SOLUTIONS OF DELAY DIFFERENTIAL
EQUATIONS.

A. ASHYRALYEV*, H. AKCA' AnD U. GURAY?

Abstract. We describe a second order accuracy difference scheme for the approximate
solutions of linear delay differential equations. A sufficient condition for the stability of this
difference scheme is given. A convergence estimate for the difference scheme is obtained.

AMS(MOS) subject classification. 34K40, 34K20, 65L05, 65L20

1. Introduction and preliminary results. Numerical solutions of
the delay differential equations have been studied extensively by many re-
searchers (cf.,e.g. [1-2], [4-7] and the references therein) and developed over
the last two decades. In the literature mostly the condition |b(¢)| < Rea(t)
is considered. The subject of this paper is the stability analysis of high or-
der accuracy approximate solutions of variable coefficients delay differential
equations. In addition, we introduced the second order accuracy difference
schemes for the approximate solutions of the initial value problem for lin-
ear delay equations. A sufficient condition for the stability of this difference
scheme is given. Convergence estimates for second order accuracy difference
schemes are also obtained.

Usually delay equations can be solved by adapting standard numerical
methods for differential equations without delay. But it is difficult to gen-
eralize for any numerical method to obtain for instance high order accuracy
algorithms, because high order methods may not give good results. Even if
a(t), c(t) and g(t) are arbitrary differentiable functions, but u(t) may not have
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224 A. ASHYRALYEV, H. AKCA AND U. GURAY

the required number of derivatives for a sufficiently large {. This property
can be examined on the following test equation:

v (t) = —u(t) + u(t — 1), t>0,
w(t) =t +1, -1<t<0,

(1.1)

For t € [0,1], u(t —1) = ¢ is obvious. Therefore on the interval [0, 1] the test
problem can be considered as an ordinary initial value problem (V' P) such
as

(1.2) ui (t) = —uy(t) + ¢, u1(0) = 1.

Having solved this simple initial value problem, one can compute u(t) on the
interval [1, 2] by solving the delay differential equation

(1.3) uy(t) = —ua(t) + uy(t — 1), us(1) = uy(1)
and, in general,
(1.4) ui(t) = —w:(t) + w1t — 1), ws(i — 1) = w1 (2 — 1),i =1,2,...

By mathematical induction, approximate solutions of the problem (1.1)
can be easily obtained. Using the recursive formula (1.4) the first few terms
of the sequence of the solutions can be found as follows:

u(t) = 2 t+t—-1,
(1.5) ua(t) 2e~ + 2te™ "D 4t — 3,
uz(t) = 2e7'+ (12 4+2)e D 4t 5.

The second derivatives of the solutions sequence u;(t) and u»(¢) have dif-
ferent values at the point ¢ = 1. That means u”(t) does not exist.

2. Statement of the problem. Consider the linear delay differential
equation '

v(t) = —a(t)ult) +d(t)u(t—w), t>0,

(2.1)
u(t) = g(b), —w<t<L0,

where a(t), c(t) € C?([0,0),R) and g(t) € C*([~w,0],R), w > 0 is a con-
stant delay. For existence and uniqueness of the solutions of the initial value
problem (2.1) see [4,5,6]. We are interested to introduce an asymptotically
stable high order accuracy difference scheme for the approximate solutions
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of (2.1). It has been already proved that if |b(¢t)| < a(t) for every ¢ > 0,
then the solutions of (2.1) are asymptotically stable [4,5,7]. A solution u(t)
of (2.1) is said to be asymptotically stable if

(2.2) lu(t)] < max lg(t)] for every t,w > 0.

Using the second order accuracy implicit difference scheme for differen-
tial equations without delay (see, for example, [3]), we have the following
approximate solutions for the IVP (2.1)

uy=9(0), th=kr, Nr=w, 0<k<N,and

ak——-a(tk—%v'), kab(tk—%T), kE>1,

L(uk — up—1) + (ax + 37ad)ur = sarbrTg(te — w)
—|—%—bk[g(tk —w) + g(tg—1 — w)], 1<k<N,
L (ug — ur—1) + (ar + 37a})ur = 3(Tar + 1brus—n
+3bruk-n-1, N +1<k.

The difference scheme (2.3) approximates the solutions of (2.1) on the entire
interval. In addition, if the condition |b(t)| < a(t) for every ¢ > 0 is satisfied,
then the difference scheme (2.3) defines an asymptotically stable solution for
the IVP (2.1).

Denote
1 -1
(2.4) Dy = {1 +rax+ ;(Tak)ﬁ} for k>0,
) De---Djp, k>3,
2.5 i) ={ o P k2

LEMMA 1. If Dy 1s defined by (2.4), then the following identity
1
(2.6) I-Dj= {mj + 5(7%)2} D;
holds for j = 1,2,3--- The proof of the lemma is obvious.

LEMMA 2. An approzimate solution of the IVP (2.1) can be defined as
follows: '

ur = u(k, 0)g(0) +j§1 %Tu(k,j - 1)[a;b;Tg(t; — w)
+bi(9(t; — w) + g(tj-1 — w))]

(2.7)
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where 1 < k< N, and

koo
(2.8) ug = u(k, N)uy + ,-=%+1 sTu(k,j — 1)[(a;7 + 1)bjuj—n
+bjUj_N_1]

where k > N + 1. The proof of the lemma is obvious.

THEOREM 1. Assume that the condition |b(t)| < a(t) ( for every t > 0)
holds and uy, is defined by (2.7) — (2.8). Then for every k > 0 and for every
step size T we have

(2.9) lusl < _max 1g(t;)].

Proof. First consider the case 1 < k < N. From the hypothesis and
using the formula (2.7), we have

k
juel < u(k, 0)lg(0)] + 3= 5rulk, )Ds{(aslbslr + )

j=1

(19(t; = w)]) + |bj]lg(tj—1 — w)l]

k
< u(k, ())lg(())l'*'z_ﬂ,1 ';'Tu(kd)Dj {{&Im + la;llllg(t; — )] + lasllg(tis — w)l}

k ' 1
< u(k, O)lg(0)| + _max lo(t)| Y- rulk,1)D; {5027 + a;}
and by the Lemma 1

u(k1j)Dj[ajT + %(a]'T)Q] = ]Si-:l[u(kaj) - ’U,(k,] - 1)]

k
(2.10) /=

It follows that
[uel < u(k, 0)lg(O)] + _max lg(&)I(1 — uk, 0)),
consequently we obtain the result

(2.11) ur] < _max 1g(t;)]
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for 1 <k < N . Applying the mathematical induction, one can easily show
that it is true for every k. Namely, assume that the inequality (2.9) is true
for N(n—-1)<k<nN,n=1,23,--- Thus

2 a;T
|uk| < u(k nN)}unNH Z ]» ] 1) {[L-é—)‘ +ajT]luJ'_N| + J2“'|Uj..N._1|}
j=nN+1

: (a,7)?
u(k, N)|u,n| + Z u(k, j)D; {——12—+aj7} max _ |u,|

j=nN+1 nN+1<j5<k

and by Lemma 2 we have

k

) u(k,j)Dj{(“’2) + a7 }:1—u(k,nN)

j=nN+1

and it follows that

el < uk, Nlunn |+ max_ Jus| {1 - u(k, N)}

< <

< omax [usl < _max lg(t))]
for every k, nN <k <(n+1)N.
This result completes the proof of the theorem .

3. Convergence estimate of the difference scheme. We have al-
ready shown in Section 2 that approximate solutions of (1.2) defined by (2.3)
are bounded for every k. Before going to discuss convergence properties of
the solutions, let us introduce the following notations.

er = u(tr) — ux represents the component of the error vector e”, and A
denotes the component of the approximation vector A” where

c)

z)ekv 60201 ISkSNv

1
(31) Ak ;(ek — €f— 1) + (ak -+

Ta
(ek - ek_.l) + (ak + -—2-1“-)6;6

(rar + 1)brex—n — Ebkek;N_l, N+1<k.

(3.2) A =

DNy | =
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The following equations can be obtained in an obvious way:

u(ty — §) — 3(u(ts) + u(ts-1))

(33) ty s—7/2
= % f I vw'(A)drds, tioi <s< i
tk—7/2 s
and
u(s) —u(te —Z) = (s —te — ) (tx — %)
(3.4)

v [ (s=MN"O)d, ey <5<t

tk—-T/Q

THEOREM 2. The estimate

k
(3.5) > rlAi| < M7, forall kE>1

=1

holds, where M is a real number independent of 7.
Proof. First consider the case 1 < k < N. Using the definition of A, we
may write from (2.1)

ty

Av=— [ (~a(s)u(s) +b(s)als — w))ds + (e + b Ju(ts)

T
te—y

1
+9(tk-1 — w)) - akbkgg(tk —w) = Sbe(g(te — w)

g
1 e . T T
= ;tk/f (b(s)g(s —w) — beg(tr — '2')) ds + be[g(tr — 5)

(=50t = ) + glter — D]+~ [ (axuts — 3) = a(s)u(s)) ds

te—1

+ay, { / (ak'u(t,v;) —a(s)u(s)) ds + / (b(s)g(s — w) — brg(tr — w)) ds} .

k—T/2 t—7/2
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Analogously, the definition of Aj for the case N +1 <k is

Ay = % / (—a(s)u(s) +b(s)g(s —w))ds + (ax + gai)u(tk)

te—-1

1 1
——2~(7'ak -+ 1)bku(tk_.1v) - Ebku(tk_]v_l)

ty

_ % (b(s)u(s —w) — beu(te ~ ) ds + bufu(tx — )

te—a

-%(u(tk_N) +ulteorn))]ds + % [ (@t~ 5) — als)u(s) ds

b3

+ay, { / (apu(te) — a(s)u(s)) ds + / (b(s)u(s — w) — bru(te—n)) ds} .

k—T/? tk—‘r/2

Thus we can rewrite A; using the formulas (3.3)-(3.4) for the case 1 <
kE<N:

4y = % {t / | ~//2 (s = V() g(A — w))" dAds + -;-t _//2 / 9'(\ —w)dA ds}
1 tr te—T/2
= [ ] =D = a@ M) + (2¢'() — a1

+a) ' (N)gA = w) + N g (A — w)]] dr ds

S

+ay, { 7 [tk./ﬁ?a’(/\)u(s) dX + 7%1/(/\) d\| ds

k—-‘r/z
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). te—7/2 ty
+ / / ¥(\)g(s — w) dA+ / beg ) — w) d,\] ds} .
t—7/2 s s
It follows that
k
(3.6) > 74 < M7
i=1

Finally, for the case k > N + 1, the same estimate as before may be obtained
by a similar type of calculations. The proof of the theorem is complete.

THEOREM 3. Ifu(t) is a smooth solution of the IVP (2.1) and the approz-
imate solutions uy are defined by (2.3), then for every k > 1 the convergence
estimate

(3.7) Iu(tk) — ukl < M7?

holds, where M is a real number independent of T.
Proof. The proof of the theorem is based on the estimate (3.6) and

k
(3.8) lex] <Y 7|A;|  forall k>1.
=1
First let us consider the case 1 < k < N. Using (2.4)-(2.5), we can obtain
k k
(3-9) lex| <D Tulk,j —1)|4;] < D Tl4,l.
j=1 j=1

By mathematical induction it can be shown that the estimate (3.9) is also
true for any k. Namely, assume the inequality (3.8) is true for (n — 1)V <
k < nN. Then it follows that

lex] < u(k, nN)|enn)|

k . a;7)? a;T
+ Z u(k,] - 1) {[——'——( 12 ) + a,-T]lej_N| + —12"'|€j_1v._1’}
j=nN+1

k
+ 3 ru(k, )4yl

j=nN+1 -
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k (a-7’)2
<u(k,nN)len|+ > u(k,j)Dj{ 19 +ajr} max e

j=nN+1 (n=1)N<j<nN

+ Y TI4]

j=nN+1

< [u(k,nN)+ (I —u(k,nN))] max |ej|

(n—1)N<j<nN

4 Z T|A|<ZT|A|
j=nN+41
which completes the proof.
Note that the better convergence of difference scheme (2.3) in comparison
with the convergence of Euler’s difference scheme for the nonsmooth solution
of the problem is supported by the results of numerical experiments.

Acknowledgment. The first author gratefully acknowledges the sup-
port provided by TUBITAK-DOPROG Program, the second author would
like to thank King Fahd University of Petroleum and Minerals, Department
of Mathematical Sciences for providing excellent research facilities. The au-
thors are grateful to Valéry Covachev for his critical comments and useful
improvements.

REFERENCES

[1] AL-MuTIB A. N., Stability properties of numerical methods for solving delay
differential equations, J. Comput. and Appl. Math. 10 (1984), 71-79.

[2] ASHYRALYEV A. AND AKCGA H., Stability estimates of difference schemes for
neutral delay diffrential equations, Nonlinear Analysis (to appear).

[3] ASHYRALYEV A. AND SOBOLEVSKII P. E., Well-Posedness of Parabolic Dif-
ference Equations, Birkhduser—Verlag, Basel-Boston—Berlin, 1994.

[4] BELLEN A., One-step collocation for delay differential equations, J. Comput.
and Appl. Math. 10 (1984), 275-283.

[5] BELLEN A., JACKIEWICZ Z. AND ZENNARO M., Stability analysis of one-step
methods for neutral delay—differential equations, Numer. Math. 52 (1988),
605-619.

6] CookE K. L. AND GYORI 1., Numerical approzimation of the solutions of
delay differential equations on infinite interval using piecewise constant ar-
guments, J. Comput. Math. Appl. 28 (1990), 81-92.

[7] TORELLI L., Stability of numerical methods for delay differential equatzons, J.
Comput. and Appl. Math. 25 (1989), 15-26.






FUNCTIONAL VOLUME 6
DIFFERENTIAL 1999, NO 3-4
EQUATIONS : ’ PP. 233 - 247

NONOSCILLATION OF A SECOND ORDER LINEAR DELAY
DIFFERENTIAL EQUATION WITH A MIDDLE TERM *

L. BEREZANSKY ' Axnp E. BRAVERMAN !

Abstract. For a delay differential equation
B(t)+ Y ar(tE(he(t)) + 3 bi(®)z(ge(t)) = 0, ha(t) <t, gu(t) <1,
k=1 k=1

a generalized Riccati inequality is constructed which implies nonoscillation of the differ-
ential equation.
Comparison theorems and an explicit nonoscillation condition are presented.

Key Words. Oscillation, second order delay equation, comparison theorems.

AMS(MOS) subject classification. 34K15, 34K25.

1. Introduction. This paper deals with oscillation problems for a scalar
linear delay differential equation of the second order. Such equations attract
attention of many mathematicians due to their significance in applications.
We mention here the monographs of A. D. Myshkis [1], S.B. NORKIN [2],
G.S. LADDE, V. LAKSHMIKANTHAM and B.G. ZHANG (3], I. GYORI and
G. Lapas [4], L.N. ERrBE, Q. KoNG and B.G. ZHANG [5] and references
therein. The monographs contain examples of physical models leading to
equations of the type

x<t+zak E(h(t) + 3 beOa(gn(t) = 1), he(®) <t gilt) < ¢

k—

* Supported by Israel Ministry of Absorbtion
t Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
! Technion - Israel Institute of Technology, Haifa 32000, Israel
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234 L. BEREZANSKY AND E. BRAVERMAN

The term with the first derivative is usually called “a damping term”.
For example, in the usual equation of oscillations (without delay) such a term
corresponds to the media resistance. The greater part of the literature deals
with equations not containing the term with the first derivative. For these
equations if the coeflicients and a solution are positive on the semiaxis then
its derivative is nonnegative. This fact is very important; it is employed in
most investigations on second order delay differential equations. If the first
derivative is included in the equation explicitly (the equation contains the
middle term), then a sign of a solution does not uniquely define the sign of its
derivative. Therefore the study of oscillation properties of the equations with
the middle term is more complicated. This is the reason why such equations
are much less studied than the equations without the middle term. The
following particular cases were considered: the middle term is not delayed
(see, for example, papers [6,7]) and the delay is constant [8,9].

In this paper we consider the general class of equations containing the
middle term with deviating argument and study properties of these equa-
tions concerned with nonoscillation. The main result is the following: if a
‘generalized Riccati inequality (which is constructed here) has a nonnegative
solution for ¢t > ty, then the differential equation for ¢ > ¢, has a positive
solution with a nonnegative derivative and the fundamental function of this
equation is positive. If the middle term is not delayed, this immediately
yields that the following four properties are equivalent: nonoscillation of
solutions of this equation and the corresponding differential inequality, posi-
tiveness of the fundamental function and existence of a nonnegative solution
of a generalized Riccati inequality.

We employ a generalized Riccati inequality to compare oscillation prop-
erties of two equations without comparing their solutions. One can treat
these results as a natural generalization of the well-known Sturm compari-
son theorem for a second order ordinary differential equation.

By applying the positiveness of the fundamental function we compare
positive solutions of two nonoscillation equations.

The paper also contains explicit nonoscillation conditions obtained by
construction solutions of generalized Riccati inequality.

The paper is organized as follows. Section 2 contains relevant definitions
and notations. In section 3 we obtain the main result. Section 4 deals with
comparison results. The last section includes some explicit nonoscillation
conditions. .

In this paper we follow the method employed in {10] for the second order
delay differential equation without middle term. -
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2. Preliminaries. We consider a scalar delay differential equation of
the second order

(1) #(t) + Zak(t (he(t)) + Zbk(t (g8(t)) =

under the following assumptions:

(al) ax, by are Lebesgue measurable and locally essentially bounded
functions;

(a2) hi, gr are Lebesgue measurable functions,

hi(t) <t, lim hi(t) = oo, ge(t) <1, lim gi(t) =

Together with (1) consider for each 9 > 0 an initial value problem with
a right hand side

(2) t) + Z ak Ilf(hk + Z bk(t x(gk(t)) = f(t), t> to,

(3) z(t) = o(t), £(t) = P(t), t < to; 2(te) = xo, E(to) = p.

We also assume that the following hypothesis holds

(a3) f : [to, 0) — R is a Lebesgue measurable locally essentially bounded
function, ¢, 1 : (—00,ty) — R are Borel measurable bounded functions.

DEFINITION 1. Suppose a function z : [ty, 00) — R is differentiable and
z 18 locally absolutely continuous function. Extend the functions x and & for
t <ty by the help of equalities (3). We say that extended so function x is
a a solution of problem (2), (8) if it satisfies equation (2) for almost every
t € [t(), OO) .

DEFINITION 2. For each s > 0 the solution X (t,s) of the problem

n B(t) + Z ar(t)E(hi(t)) + Z be(t)z(gr(t)) =
x(t)—() :c(t)—O t<s; m(s)—_O z(s) =
is called a fundamental function of equation (1).
Remark. In literature [16] the fundamental function is also called the
Cauchy function.
We assume X (t,s) =0, 0<t <s.
Let functions z; and z, be the solutions of the following problems

k=1

#(t) + i ar(t)T(he(t)) + i br(t)z(gr(t)) = 0, t > to;
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z(t) =0, #(t) =0, t < to,

with initial values z(ty) = 1, 2(ty) = 0 for x; and z(tx) = 0, (tp) = 1 for
Z9, Tespectively.

By definition z3(t) = X (¢, o).

LeMMA 1. {11] Let (a1)-(a3) hold. Then there exists one and only one
solution of problem (2), (8) that can be presented in the form

£(t) = 7230 + a(t)zh + [ X (L, 9)f()ds — 3 [X (6 )bu(s)elor(s))ds-
to =1/t

T

t t

(5) > tX(t,s)ak(s)t/J(hk(s))ds + X(t,s)f(s)ds
k=1710 0

(The functions ¢(t) and ¥(t) which describe “the prehistory” of the pro-

cess are not defined for t > ty. In the latter equality we assume ¢(s) = 0, if
s>ty and Y(s) =0, if s>t.)

3. Nonoscillation Criteria. Denote

a+

= max{a,0}, ¢~ = max{—aq,0}.

The following theorem establishes a sufficient condition of existence of a
nonoscillatory solution.

THEOREM 1. Suppose there exist ty > 0 and a nonnegative locally abso-
lutely continuous function u satisfying the following conditions:

(b1) u(t) +u?(t) + kzi: af (t)u(hi(t)) exp {- /hi(t) u(s)ds} +
(6) kz=:1 b (t) exp {— /gk(t) u(s)ds} <0

where the sums contain only those terms for which hi(t) > to or, respectively,
gk(t) _>_ to.
(b2) The equation

(7) H(t) + u(t)2(t) + l; ax(®)2(he(t)) = 0

has a positive fundamental function Z(t,s) > 0 for t > s > t,.
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Then

1) the fundamental function of (1) and its derivative mt X, are posztwe
fort>s>ty: X(t,s)>0, X,(t,s)>0;

2) there ezxists a solution x(t) of (1) such that z(t) > 0, z(t) > 0, t > 1.

Proof. 1) Consider an initial value problem

£ 3 aOE ) + 32 b()a(ge(t) = 1), £ >t
k=1 k=1

(8)
z(t) = &(t) =0, t < .
Denote
(9) z(t) = 2(t) — u(t)z(t),

where z is the solution of (8) and u is a nonnegative solution of (6). From
(9) we obtain

(10) z(t) = /t: exp {/: u('r)df} z(s)ds,

t=z4ur, t=:i+ur+uz+u’s=2+uz+ (@ +ud)z.

Substituting &, £ into (8) we obtain

(11) 2(t) +u(t)z(t) + :; ap(t)z(he(t)) =
—(a(t) + u*( z ar(t)u(he(t))z(he(t)) Z br(t)z(gr(t)) + f(2)-

Equalities (8) and (9) imply z(¢;) = 0. Using (10) we can rewrite equation
(11) in the form

Z(t) + u(t)z(t) +§; ap(t)z(he(t)) =

(u(t)+u2(t) +XT::1;§(t Ju(he (1) exp{ / gs)ds}

k=1
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éllylf(t) exp {—/g:g)(s)ds}) /t: exp {/: u(r)dq—} 2(s)ds+

il F (t)u(he(t) / &P { / " t)(T)dT} z(s)ds+

k=1

™' on(t)
ké:lb (t)/ exp{/s U(T)d’r} z(s)ds+

’
T

> ai (t)u(hx(t)) /tohk(t) exp {/shk(t) u(T)d'r} z(s)ds+

k=1

(12) é’b;(t) /t:k(t)) exp {/sgk(t) u(T)dT} z(s)ds + f(t), z(tp) =0.

Denote by Z(t,s) the fundamental function of (7) and by Fz + f the right-
hand side of the equation (12). Then equation (12) is equivalent to the
following equation

(13) z=Hz+Dp,

where

9 (HE)O = [ 2s)(F)6)ds, plt) = / 2(t,5)f (s)ds

Inequalities (6) and Z(t,s) > 0 yield that if z(¢) > 0 then (Hz)(t) > 0
(i.e operator H is positive).
Denote

c(t) = u(t) +u?(t) + z ai (£)u(hx(t)) exp { /Z(Q)L(s)ds}

S b (1) exp {— [ u(s)ds}.

- k(1)

Since u is locally absolutely continuous, ¢ € Ly, for every b > 5, where
L. is a space of all Lebesgue integrable on [a,b] functions with the usual
norm.
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Function Z(¢, s) is bounded [12] in any square [ty b] X [to,b], hence for a
certain K > 0, |Z(t,s)| < K, b>1t> s> t.
Then we have for ¢ € [to, b]

[(Hz)(t)] < Kexp {/t: u(T)dT} /t:(lc(s)l—i—
Z lax () lulhe(s))] + i ou(o)) [ etrldrds = K exp { I u(T)dT} y

<[ ([ o+ S tmoiutrent+ 3 o] as ) o

The kernel of Volterra integral operator H is bounded in each square
[to, b} X [to,d], hence [13, p.519] H : Lps — Ly is a weakly compact
operator and his square is compact operator. The spectral radius of a com-
pact Volterra integral operator in the space L, is equal to zero [14, Th.6.2,
p.143). | .
Therefore the spectral radius of operator H: 7(H)=0.
Thus if in (13) p(t) > 0 then

2(t) = p(t) + (Hp)(t) + (H'p)(t) +... 2 0.

If f(t) > 0 then by (14) p(¢t) > 0. Hence for equation (11) we have the
following: if f(¢) > O then the solution of this equation z(t) > 0.

Therefore equality (10) implies that the solution of (8) and its derivative
are nonnegative for any nonnegative right-hand side.

The solution of this equation can be presented in the form (5), conse-
quently

(15) ) = [ X(t,5)1(s)s, (t) = R AN

As it was shown f(t) > 0 implies z(¢) > 0 and z(t) > 0. Consequently, the
kernels of the integral operators (15) are nonnegative. Therefore X(t,s) > 0
and X,(t,s)>0.

Since X,(s,s) = 1 implies X, (¢, s) > 0 on some interval [s, s + o] for a
certain o > 0, the strict inequality X (¢,s) > 0,t > s > ¢, holds.
v 2) A function z(t) = X (¢,1) is a positive solution of the equation (1)
with nonnegative derivative.
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The proof is complete. O

COROLLARY 1. Suppose ax(t) < 0 and there exist ty > 0 and a nonnega-
twe locally absolutely continuous function u such that the following condition
holds

m /! t
w(t) +uP(t) + Y bf (t)exp {—/ u(s)ds} <0
k=1 9x(t)

where sums contain only terms for which gp(t) > to. Then

1) X(t,s) >0, X{(t,s) >0, t > s>ty

2) there exists a solution x(t) of (1) such that x(t) > 0, z(t) > 0, t > t,.

Proof. We have to prove only positiveness of the fundamental function
of (7). The ordinary differential equation

3(t) + u(t)z(t) = 0

has a positive fundamental function. Then inequality ax(t) < 0 and Theorem
2 of [15] imply that the fundamental function of (7) is positive. O

We will demonstrate that condition (bl) in Theorem 1 is a necessary one
for nonoscillation of equation (1) with nonnegative coefficients. To this end
consider the delay differential inequality

(16) §(8) + 3 a9 (he(t)) + 22 be(t)y(gr(t)) <0, ¢ 2 0.
k=1 k=1

THEOREM 2. Suppose ax(t) > 0, be(t) > 0. If there exists t9 > 0 such
that inequality (16) has a positive solution with a nonnegative derivative for
t > ty, then there exists t, > ty such that inequality (6) has a nonnegative
solution fort > t,.

Proof. Let y(t) be a positive solution of inequality (16) for ¢ > ¢, with
nonnegative derivative. Then there exists a point ¢; such that hi(t) >
to, gr(t) > to, if ¢ > t;. We can assume without loss of generality that
y(t) = 1. ,

Denote u(t) = i’%, ift > ¢t and u(t) = 0, ift < ¢;. Then u is a
nonnegative locally absolutely continuous on [t;, 00) function. The equalities

§(t) — u(t)y(t) =0, y(t1) = 1 imply that

y(t) = exp {/t: u(s)ds} , 9(t) = ul(t) exp {/t: u(s)ds} ,

(17) ii(t) = (t) exp { /tt u(s)ds } +02(0) exp { / t u(s)ds}.
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of Lo
Lot sds}] 5 o

k(t)

Substitute (17) into (16) we obtain

o/

exp{ /t (s)ds}{ (m),+u 6+ 3 a0
(18) kz::l bi(t) exp {

1

Z k Z/ gk S 0)
k=1

where the sums " contain such terms that t; < hi(t) < t; or 5 < gi(t) <
t1, respectively. For ¢t > to  y(t) > 0, y(¢t) > 0, ar(t) > 0, bi(t) > 0,
consequently, the last two terms in (18) are positive. Therefore (18) implies
inequality (6). O

In the case hi(t) =t as a corollary of Theorems 1 and 2 we may obtain
necessary and sufficient nonoscillation conditions. To this end consider the
following equation

(19) Z(t) + t)+Zbk )=0, t>0,
and delay differential inequality
(20) i(t) + a(®)y(t) + Z be(H)y(gx(t)) <0, t > 0.

COROLLARY 2. Suppose a(t) > 0, b(t) > 0, k = 1,...,m. Then for
equation (19) the following statements are equivalent:

1) There exists t; > O such that inequality (20) has a positive solution
with a nonnegative derivative for t > t,.

2) There exists to > 0 such that the inequality

(21) u(t) + u?(t) + a(t)u(t) + Z br(t) exp {—- /g:(t) u(s)ds} <0

has a nonnegative locally absolutely continuous [ta, 00) solution, where the
sum Y contains only the terms for which g(t) > to.

3) There exists t3 > 0 such that X (t,s) > 0, X,(t,s) >0, t > s> t3.

4) There exists t4 > 0 such that equation (19) has a positive solution
with nonnegative derivative for t > t4.

Remark. For equations without middle term (a(t) = 0) this result was
obtained in [10].
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4. Comparison Theorems. Theorem 1 can be employed for compari-
son of oscillation properties. To this end consider together with equation (1)
the following equation

(22) B(t) + Y ar(t)2(hi(t)) + 30 be(t)2(gi(t)) = 0, £ 2 0.
k=1 k=1
Suppose (al) and (a2) hold for equation (22) and denote by Y (¢, s) a funda-
mental function of this equation.
THEOREM 3. Suppose ar(t) > 0, b(t) > 0, and the conditions of
Theorem 1 hold for some to > 0. If

(23) ax(t) < ax(t), be(t) < be(t), Gi(t) < gu(t), ¢ > to,

then equation (22) has a positive solution with a nonnegative derivative for
t>t and Y(t,s) >0, Y, (t,8) >0, t > s> t.

Proof. By the assumptions of Theorem 1 there exists a nonnegative
solution u of the inequality (6) for ¢ > 5. Inequalities (23) yield that u is
also a solution of the inequality

i) +02(0) + 3 at (Hulha(t)) exp {- /h i(t) u(s)ds} +

k=1

t

m !

> b () exp {—/
k=1 ()
where the sums contain only terms for which hi(t) > to or gi(t) > £, cor-
respondingly. By a comparison theorem (Theorem 2 in [14]), applied to

equation (7) and the equation

U(S)ds} <0, t 21,

T Wyv Ry v

the fundamental function of the last equation is positive.
Hence Theorem 1 implies all the statements of this theorem. 0O
COROLLARY 3. Ifa(t) > 0,bk(t) > 0 and an ordinary differential equa-
tion

() + a(t)y(t) + :Z“, be(t)y(t) =0 _

s nonoscz’lldting, then equation (19) is also nonoscillating for any g(t) < t.
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Let us compare now the solutions of problem (2), (3) and the following
one

(24) t)+Zak(t)y hi(t)) + i (1) = r(t), t > to,
(25) y(t) = 3(t), 9(t) = B(t), t <to, y(to) = yo, Y(to) = ¥p-

Denote by z(t) the solution of (2), (3), by y(¢) and Y (¢, s) the solution
and the fundamental function, respectively, of (24), (25).

THEOREM 4. Suppose all the conditions of Theorem 1 hold , z(t) > 0,
(t) > 0, t > tg and ax(t) > ap(t) > 0, b(t) > b(t) > 0, r(t) > f(t);
P(t) > @(t), (t) > P(t), t < to; Yo = To, Yo > Lo Then y(t) > z(t), t >
to and Y’(t,S) > JY(t, S) >0, t>s5>1.

Proof. Denote by u a nonnegative solution of inequality (6). The inequal-
ities ax(t) > ax(t),be(t) > bi(t) yield that the function u is also a solution
of the inequality, corresponding to (6) for equation (24) and the fundamen-
tal function of the equation corresponding to (7) is positive [14]. Hence by
Theorem 1 Y (t,s) >0, t > s > 1. :

Rewrite (2) in the form

m

(1) + 2 ar ()2 (he (1) + 3 be(t)z(gi(t) =

r

=Y lae(t) — (Ol he()) — 3 be(t) = Be(De(ar(®)) + F(2).

k=1 k=1

Hence (see (5)) for the solutions of (2), (3) and (24), (25) we have

2(t) = yn(t)zo + ¥ (1, to)a Z / Y (t, 8)lax(s) — @i (s))i (he(s))ds—
g:/t: Y (¢, s)[bx(s) — br(s)]z(ge(s))ds — Z/ Y(t, s)ax(s) (he(s))ds—

g:/t: Y(t, s)5k(s)<p(gk(s))ds+/t: Y(t, s)f(s)ds
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V) = (o + Vet~ 3= V6 (o)) -

> [ V(6 o)aar(oNds + [ Vit r(s)is,

where ¢(gi(s)) = B(hx(5)) = B(gx(s)) = B(hu(s)) = 0, it hu(s) > to, gu(s)) >
to and :r(gk(s)) = O,.'ic(hk(s)) =0if gk(t) < {p or hk(S) < tg.

Therefore y(t) > z(t) > 0, t > .

Comparing the solutions of equation (4) and the corresponding equation
for Y (¢,s) we see that Y(¢,s) > X(t,s), t > s > t3, which completes the
proof. O

If in (2), (3) bk(t) < 0,h(t) = t we can obtain a stronger comparison
result. To this end consider the following two equations

Be) + a)ir) — 3 (00 = 0, 2 0

(26) z(t) = p(t ) t< t07$(t0) = 79, 2(ty) = T,
§(t) +a(t)y(t) - i br(t)y(gr(t)) = r(t), t > to,
(27) y(t) = @(t),t < to; y(to) = vo, §(to) = ¥p.

Denote by z(t), y(¢) and X(t,s), Y(t, s) solutions and fundamental functions
of (26) and (27), respectively.
THEOREM 5. Suppose

alt) > a(t),bi(t) > bi(t) 2 0,

B(t) > @(t) > 0,7(t) > f(t) > 0,50 > 70 > 0,y > 79 > 0.

Then y(t) > z(t) > 0,t > to and Y(t,s) > X(t,5) >0, t > s > to.
Proof. Inequality (6) for equation (26) is

(28) i(t) + u*(t) + at(t)u(t) <O0.
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Straightforward calculations imply that the function

exp{— ft a*(s)ds}

U = (= J2 at (r)dr ) ds

is a nonnegative solution of the equation corresponding to inequality (28).
Then for equation (26) and similar for equation (27) we have X (¢,s) >
0,Y(t,s) >0, t>s>1.
Compare now solution x of (26) and solution z of an equation

(29) E(t) +a(t)Z(t) = f(t), 2(to) = o, i(to) = .

By straightforward calculations we have that z(t) > 0,1 > ;.
Rewrite equation (29) in the form

3(t) + i 2(ge(t)) i 2(gr(t)) + f(2).

Then for solutions of equations (26) and (29) we have

z(t) = 7, () zo+ X (8, 1)z +i /tt X (¢, s)bk(s)go(gk(s))ds—l—[t X(t,s)f(s)ds,
2(t) = z1 (D)o + X (&, to)zy + i /tt X (¢, 8)b(s)p(gr(s))ds
k=17t

_g: /t:X(t,s)bk(s)z(gk(s))ds-%— /tt X(t,5)f(s)ds

Hence z(t) > z(t) > 0,t > ty and as a consequence z,(t) > 0. Similarly,
y(t) >0, y(t) > 0.

Now the same computation as in the previous theorem imply the asser-
tion of the theorem. 0O

COROLLARY 4. Suppose bi(t) < 0, z and y are solutions of equation (19)
and inequality (20), respectively, such that x(t) = y(t), t < to;z(to) = y(to)-
Then z(t) > y(t),t > to.

The proof is based on solution representation (5) and inequality X (t, s) >
0,t>s>0.
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5. Explicit Nonoscillation Conditions. We will employ Theorem 1
for obtaining explicit sufficient conditions of nonoscillation.
THEOREM 6. Suppose the following conditions hold

(30) Zak (t) ™ (t +Zb+(t VEBa(t) <1/4, t > to,

(31) Z/h(t) O rwe )dT<1/e t> o,

where h(t) = ming {hy(¢)}.

Then equation (1) has a positive solution with a nonnegative derivative
fort > t,.

Proof. Let u = %. Then inequality (6) takes a form

1 T af(t) gk()
i kzlhk(t) +Zb+(t)

and is equivalent to an inequality (30).
Equation (7) with v = & is

(32) £(t) + Z(t) + Z ai (t)z(he(t)) =

Substitution z(t) = %-? in equation (32) we obtain

(33) i;(t)+kz=jlak(t) 7 (t)v(hk(t))—

Condition (31) yields [15] that the fundamental function of (33), and there-
fore of (32), is positive. Theorem 1 implies the statement of the theorem.
O

COROLLARY 5. Suppose the following condition holds

%a*(t)t + ST HH(E)Ba(t) < 1/4, t >ty
k=1

Then equation (19) has a posztwe solution with a nonnegatwe derivative for
t > to.
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NONANTICIPATING SELECTORS OF SET-VALUED
MAPPINGS AND ITERATED PROCEDURES*

A. CHENTSOV'

Abstract. An analog of the known method of programmed iterations (MPI} [1}-{10]
is considered. This method is used [1]-[6],(8, 9] both for solving differential games (DG)
(see monographs [11]-{14] and for an investigation of other problems [7, 10, 15, 16}. In
particular, by MPI constructing solving quasistrategies [1]-[6], [8],[17]-[19] was realized
(in this connection, see generalized constructions [1]-[6]). But, the above-mentioned con-
struction of solving quasistrategies requires the preliminary determination of some (very
important) auxiliary objects; of course, these objects (the value of DG, the stable bridge)
represent a very essential interest for solving the corresponding DG. Now, it is important
to note the following fact: under the employment of constructions [1]-[6],[8] the solving
quasistrategy is defined in terms of the above-mentioned (auxiliary} objects. In contrast
to-the above-mentioned approach in the given paper a ”direct” method of constructing
set-valued ”quasistrategies” on the basis of iterations is considered.

Key Words. Nonanticipating selector, set-valued mapping, iterated procedure, qua-
sistrategy.

1. Introduction. In many concrete problems it is important to con-
struct an useful control in the form of the nonanticipating response to the
realization of a priori indefinite factors. Sometimes, it is advisable to consider
the motion of a system in the form of the above-mentioned response. We

consider the unit " pointer” I 2 [0, 1] and the set C of all piecewise constant
and continuous from the right (real-valued) mappings ¢(-) : I — [-1,1].
We call an operator @ : C — C nonanticipating mapping in the case, when

* Supported by Ministry of RF on Higher Education, project no. 97-0-1.9-19, and In-
ternational Science and Technology center, project no. 1293.
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16 Kovalevskaya St., 620219 Ekaterinburg Russia.

249



250 A. CHENTSOV
Vui(-) € CVuy(-) € C Vet €]0,1]:

((vl(') l [OatD = (U2(°) I [01t[)) =

(1.1) (((wa()) 1 [0,2]) = (ex(v2()) | [0, 2]))-

We use in (1.1) the natural notion of a restriction of a function to a nonempty
subset of domain of definition. The definition (1.1) is analogous to the corre-
sponding one of [17] and many other investigations. It is natural to introduce
a set-valued variant of (1.1). In this case we consider in the capacity of o a
mapping from C into the family of all subsets of C. We obtain a set-valued
variant of pseudo-strategies of [20]. In addition, for (1.1) it is possible to
choose a set-valued analog. Namely, under conditions of (1.1) it is possi-
ble to introduce the following requirement on the choice of the considered
set-valued mapping a:

ay @O0 = @0 | 0.10) = (@) | 0.
| u() € a(u ()} = {(u() [[0,¢) : u() € a(os()}).

Of course, here a(v(-)) is a subset of C under v(-) € C. The property
(1.2) defines an important case of the above-mentioned set-valued ” pseudo-
strategies” (see [20]). Here we have a set-valued quasistrategy (we use the
terminology of [17]). In many problems it is possible to consider an "arbi-
trary” set-valued mapping C operating on C; namely, C(v(-)) C C under
v(-) € C. The mapping C corresponds to a goal of the investigated prob-
lem. In addition, v(:) is an infinite-dimensional parameter influencing on the
attainment of the above-mentioned goal. We interpret C(v(-)) as the set of
controls u(-) resolving the problem for the parameter v(:). But, it is possible
that a priory v(-) is not known. The values v(t) become known only with
respect to an development of v(-) as a time function. Therefore, the control
u(-) € C(v(-)) is formed as a reaction on v(-) with the validity of require-
ments analogous to (refl.1) and (refl.2). As a result, we obtain the problem
of constructing nonanticipating (set-valued) selectors of the given set-valued

mapping.

2. General definitions. We use the set-theoretic symbolics including
quantors, propositional connectives and other current stipulations; denote by
2 the equality by definition and use the natural abbreviation def. If A and B
are sets, denote by B4 the set of all mappings from A into B; for each choice
of a mapping f € B4 and a set C, C C A, we denote by (f | C) the natural
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restriction of the mapping f to the set C (see [21, Ch. I]). For the designation
of superposition (of mappings) we use the natural symbol o. It is advisable
to remind some notions of general topology. Namely, we use the usual notion
of a subspace of a topological space (TS). Moreover, below we use the natural
notions of compact, countably compact and sequentially compact subsets in
arbitrary TS; in these definitions we operate on the corresponding subspace
of the given TS (see [22]-[24]; in particular, see [24, p.239]). We use nets
and the Moore-Smith convergence (see [22]-[24]). It is convenient to accept
the following stipulation in the connection with the designations for nets.
Namely, we denote each net as the triplet for which the first elements compose
a nonempty directed set and the third element is a mapping defined on the
above-mentioned (directed) set; if the last mapping has own values in the
given set H, we call the considered net as a net in H. Finally, if (D, X, h)
is a net in the set H and H is equipped with the topology 7, then we call
(D,<,h)asanetin TS (H,T). If (D,=<,h)isanetin TS (H,7)andz € H,
then we denote by (D, <X, h) L, z the Moore-Smith convergence [22, 23] of
(D,=,h) to z in the sense of topology 7. For the convergence of a sequence
(2:)ien in TS (H, T) to a point z € H we use the more traditional designation
(Z:)ien L, z. Of course, in the last case we have the following particular
case: in the capacity of (D, <) we use the positive integers N 2 {1;2;...}
with the ordinary order < of A (clearly, that < is a direction of ). If (A, <)
and (D, X) are nonempty directed sets, then we denote by (Isot)[A; <; D; <]
the set of all operators [ € D? such that

2.1} (VdeDIeA: d<10)&(V6 € AVE €A
@ (6, < &) = (I(61) < 1(62)))-

In (2.1) the isotone mappings of directed sets are defined. This construction
is coordinated with the general notion of a compactness (see [22, 23]). It is
important to note the following particular case of (2.1): (D, =) = (N, <).
In this connection we suppose for each directed set (D, <), D # 0, that
(zsot)[D; <] = (Isot)[D; =; N; <]. The last definition is useful under oper-
ations with countable compact sets. The corresponding property is realized
by the procedure that is analogous to the construction of the passage to a
subnet by an isotone mapping considered in [22, Ch. 2]. But, in the case of
the consideration of countable compact sets we apply elements of (isot)|D; <]
in the capacity of isotone mappings of [22]. Below we use the following des-
ignation Ny S NU {0}. So, Ao = {0;1;2;...}. In the following the natural
notion of the power of a mapping is used. If H is a nonempty set, then we
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denote by Iy the identical operator from H: 15 € H¥ and 14(h) £ h under
h € H. If H is a nonempty set and T € H¥, then we define the sequence

(2.2) (T*)reny : No — H”

by the following natural conditions: (T° =S n)&(Vs € N': T* =T oT1).
In terms of (2.2) it is possible to realize the basic constructions of MPI [1}-[8].
In the given investigation we operate by powers of mappings defined in terms
of (2.2). For some specific kinds of such mappings we introduce below the
infinite power. Namely, we use the above-mentioned operation of the raising
to the infinite power for set-valued mappings.

3. Nonanticipating set-valued mappings and the problem of a
selection of arbitrary set-valued mappings. We consider an abstract
construction of the determination of nonanticipating set-valued mappings.
The natural concrete variant of this procedure is the iterated construction
of [1]-[8]. But, it is possible to represent other concrete variants of the
realization of MPL

We fix: 1) nonempty sets X and T; 2) a nonempty family X" of nonempty
subsets of X; 3) TS (Y,7), ¥ # 0; 4) a nonempty set Z, Z C YX; 5) a
nonempty set 2, Q C Y*. Suppose that ®*(7) is the natural topology of
the set Y'* corresponding to the Tychonoff product of samples of TS (Y,7)
with the index set X. Consider the set Z as a subspace of the Tychonoff
product (Y*,®%(7)). We equip the set Z with the topology 6 induced [22,
Ch. 1] from (YX,®%(7)). Denote by X (by z) the family of all subsets of X
(of Z). Let X £ X\ {0}. Then X C X. In addition, Z® defines the basic
kind of set-valued mappings considered below. Moreover, we use ”partial”
set-valued mappings. Let £ be the family of all subsets of 2. Denote by £,
the family of all nonempty sets of £ : Ty 2 Y\ {#}. We consider elements of
2T (where T € %) as partial set-valued mappings. We use operators H € z7
under T # Q for constructing a parallel version of MPI.

Example 3.1. Consider (see section 1) the known concrete variant of
the general setting. This variant corresponds to the case of control problems.
Namely, in this example suppose that X 2= [0,1[ and X 2 {lo,t]: te
]0,1[}. So, (X, X) is realized. Suppose that (in this example) T 2 [-1,1] and
Q&cC (see section 1). We interprete functions w € €2 as unknown controls or
controls of ”opponent”. Moreover, we suppose that in the given case (Y, 7) is
the real line R with the ”ordinary” | - |-topology 7&. In the capacity of Z we
consider (in this example) the set Cy(I) of all uniformly continuous functions
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from X into R. We introduce the set U/ of all Borel functions U from X into
R with the following property: for each ¢ € X = I the inequality | U(¢) |< 1
takes place. Then, we suppose that principle of constructing mappings from
Q into Z is defined by integration of sum of controls U € Y and V € Q. This
corresponds to the simplest version of DG. So, we define under V' € Q the
set X(V') of all functions

t»—-—»/ (€)A(de) +jV§)d§ 0,1[— R

[0, 0

(X is the restriction of Lebesque measure to o-algebra of Borel subsets of
X = [0,1]), where U € U. Of course, X(V) C Z = Cy(I). Fix functions
a,: I — Rand B,: I — R If V € 2, then we suppose that

Xo(V) 2 {z(-) € X(V) | VE € I : au(€) < 2(€) < Bul£)}.

We obtain a compactum in the sense of the metric of the uniform convergence
in Z. So, in the form of X¢(-) we have a compact-valued mapping on 2.

Returning to the general case we note that in the following we consider
two nonempty functional sets 2 and Z. In addition, X is the common domain
of all functions of 2 and Z. Sets of X are used for the determination of
nonanticipating reactions of type z = 2(w), where w €  and z € Z. The
corresponding strict definition is realized in terms of restrictions of the above-
mentioned functions to sets of X

Remark 3.1. Consider the case connected with (1.1),(1.2). Namely,
in this case it is possible to use the following (natural for control problems)
stipulation: X = I; T =Y = [-1,1]; 7 is (in this example) the natural
| - |-topology of [-1,1]; = Z = C; X = {[0,t[: t €]0,1[}. Of course,
in the given case all following constructions are coordinated with (1.1) and
(1.2); moreover, see [17, 20].

Now we return to the general case. Introduce new definitions. If T €
Yo, w € 2 and A € X, then we suppose

(3.1) Ge)T;w| AJE {teT|(w|A)=(t]| A}

in the case w € T we have in (3.1) the nonempty set. Moreover, Vw € Q VA €
X:

(32) Q(w|A)E (Ge)[yw|Al={0e]|(w|A)=(@]A)} € .
If the triplet (T,w, A) corresponds to the conditions defining (3.1), then
(3.3) (Ge)[T;w | Al =T NQy(w ] A).
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In (3.1) - (3.3) we have germs of elements of {2; by these germs we introduce
nonanticipating mappings and a specific operator acting in the set Z7, where
T € Ly. The case T = Q) is basic. If T € ¥y, then we suppose that

(3.4) yr: 2T — 2T
is defined by the following condition; namely, VC € 27 Vw € T

Ww(C)w) £ {f € Cw) | VA € X Vi € (Ge)[T;w | 4]
AfeC@): (f1A)=(f]A)}
In terms of (3.4),(3.5) we introduce the general notion of a nonanticipating

mapping. If T € T, then N[T] 2 {€C € 2T | C = 47(C)} is the set of all
nonanticipating mappings with the domain 7. Suppose VT € £ Vo € z7:

(3.5)

(3.6) No(T; ] 2 {Ce N[T]|VweT: Cw) C a(w)}.

In (3.6) we consider the set of all nonanticipating mappings that are set-
valued selectors of the given (set-valued) mapping a. We have in the form
ra vq an element of the set Z of all operators acting in the set 2. So, for
C € z% and w € ) we obtain in the form of I'(C)(w) the set of all f € C(w)
such that

(37) VA XVoeQow|A)IFeC@): (f|4)=(F|A).

The property (3.7) is used in the basic definition of nonanticipating set-
valued global mappings. The mapping ' : Z% — 2% we use for the iterated
determination of elements of the set

(3.8) N2{Cez?|T(C)=C}

As a corollary, we have the following basic representation for nonanticipating
selectors of a set-valued mapping. Namely, Vo € 2% : No[q] 2 No[©; @]. But,
now it is advisable to introduce basic structures of Z% used in the following.
If H; € 2% and H, € 2%, then suppose def:

(3.9) (Hi C Hy) <= (Vw € Q: H(w) C Hy(w)).

We use in the following the notion of a monotonocity of I" only in the sense
of (3.9). Moreover, in the sequel we use the ”ordinary” set-theoretical con-
vergence of sets [25, Ch. I]: if H is a set, (A;):cn is a sequence of subsets of H

and A is a subset of H, then (A;);cnr | A denotes that A is the intersection
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of all sets A;, i € N, and (moreover) Vk € N : Ay C Ap. If (Cylien is a
sequence in z** and C € Z%, then def:

(3.10) (Codien 4 C) = (Vo € Q2 (Ci(w))iew | C(w))-

We equip z% with the order (3.9) and with the convergence (3.10). So, we
have the basic space (2%, C,|}). Returning to (3.8), we obtain that No[a] =
{C € N|CC o} under o € % By (3.3) the following useful property is
used. Namely, for C € 2%, T € £y and w € T we have

(3.11) I'(C)(w) (€[ T))(w) C Cw).

From (3.11) we obtain VC € NVT € £y : (C | T) € N[T]. Moreover, we
have Va € 29 Va € Ny[a] VT € Z¢:

(3.12) (| T) € No[T; (a| T}

In the connection with (3.12) we note the important property: under a € z
and T € L, it is possible that in the set Np[T’; (a | T)] singular elements are
contained. It is impossible to consider these elements as mappings on the
left-hand side of (3.12).

Example 3.2. Return to the particular case connected with (1.1), (1.2).
We use the concrete definition of Remark 3.1. Consider a € z% = z€ such
that under v,(-) € C the v,(-)-image a(v.(-)) is the set of all constant controls
u.(-) € C, u.(t) = v* € [-1,1], for which

0/ w(t)dt + 0/ v.(t)dt = 0.

Then a(v(-)) # 0 under v(-) € C. If @ € 2% = z€ has the property (1.2)
and (moreover) a(v(-)) C a(v(-)) under each v(-) € C, then « is the "empty-
valued” mapping. Namely, under the above-mentioned conditions the prop-
erty a(v(-)) = 0 takes place. Fix vy(-) € C and introduce one-element set
T, £ {vo(-)}. Then a 4 (a | To) is the trivial nonanticipating (on Tp) map-
ping with nonempty values ag(t), t € Tp. Consequently, it is impossible to
obtain qq in the form (3.12).

4. Some general properties. We consider the basic space (2%, C, {})
and the mapping I' € Z. Denote by Z the family of all sets H, H C z%,
such that VK € H: T'(H) € H. Of course, elements of Z are I'-invariant
subspaces of Z? and only they. If R is a subfamily of Z, then the union of
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all sets R € R is an element of Z; in the case R # () the intersection of all
sets R € R in an element of Z. Finally, § € Z and 2% € Z.

Denote by Z the family of all sets H, H C z%, such that for each
sequence (H;);cx in H and for each mapping H € Z% the implication

((H)iew 4 HY => (H € H)

takes place. Then it is possible to call H € Z a closed set in the space (2%, {);
the last space is the structure equipped with the convergence of sequences.
Of course, § € Z, z% € Z; if R is a nonempty subfamily of Z, then the
intersection of all sets R € R is an element of Z. For an investigation of
Z and Z in terms of the mapping I' we consider a topological construction
connected with (Z,8).

So, let: F be the family of all closed in (Z,8) subsets of Z (of course,
F C Z); F be the family of all sequentially closed [26] in (Z, §) subsets of Z;
K be the family of all compact [23, Ch. 3] in (Z, §) subsets of Z; K be the
family of all sequentially compact [24, p. 239] in (Z, 8) subsets of Z; C be the
family of all countably compact [24, p. 239} in (Z, 8) subsets of Z. Moreover,

we suppose T 2¢n F, obtaining the family of all closed countable compact
in (Z,6) subsets of Z. Then KUK C C. If (Y, 7) is a Hausdorff space, then
(Z,0) is a Hausdorff space and K C T; moreover, in this case (of a Hausdorff
space (Y, 7)) the inclusion K C F takes place.

PRroOPOSITION 4.1. If (Y,7) is a Hausdorff space, then K € Z and
Kte Z.

Proof. Let U € K and w € Q. It is sufficient to establish the property
T'(U)(w) € F (see (3.5),(3.7)). We use the known Birkhoff theorem about the
representation of the closure operator (see [21]-[24]). Let (D, <, ¢) be a net
in '(U)(w) and f € Z. Moreover, let (D, <, ¢) -2, f. Of course, f € U(w).
Here we use two following properties: 1) U(w) € F; 2)p(d) € U(w) under
de D Let Ae X and @ € Q(w | A). We use the axiom of choice
and (3.7). Let ¢ be a mapping from D into U(w) for which Vd € D :
(p(d) | A) = (¢(d) | A)). But, U(w) € K Therefore (see [22, Ch. 2]), it is
possible to choose f € U (@), a nonempty directed set (A, <) and a mapping
I € (Isot)[A; «; D; <] for which the convergence (A, <, @ o) LN f takes
place. Then by known [22, 23] properties of Tychonoff products and relative
topologies we have Vzr € X:

(4.1) (A, < (@0 )()(@)) = fl@)&((A, <, (p o () (&) = f(2)).

In (4.1) and below we use ” ordinary” stipulations: (pol)(-)(z) and (@ol)(-)(x)
are mappings from D into U(w) and U(w) with the values (¢ o 1)(6)(z) and
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(@ o 1)(6)(z) respectively. We use (4.1) in the case z € A. Then by the
choice of ¢ we have (f | A) = (f | A), since (Y, 7) is a Hausdorff space. So,
feU@ : (f| A =(f] A). But, the choice of A and & was arbitrary.
Therefore, from (3.7) we have f € I'(U)(w). Since the choice of (D, <, ¢)
and f also was arbitrary, we have I'(U)(w) € F. The last property reduces to
the property of a compactness of I'(U)(w). The statement K® € Z has been
established. The proof of the property K@ € Z is analogous (here the more
simple "sequential” procedure is used that is in essence analogous to [4]-[6]).

It is possible easily to show that T € Z.

PROPOSITION 4.2. If (Y, 7) is a Ty - space [22]-[24], (C:)ien is a sequence
in T and C € 2%, then

((Co)ien 4 C) = ((T(Ci))ien 4 T(C)).

Proof. Let (C;);cn be a convergent (to C) sequence in T (see (3.10)).
Since T' is the monotone (in the sense of (3.9)) mapping, it is sufficient to
establish that under w € Q2 the intersection of all sets I'(C;)(w), i € N, is
a subset of I'(C)(w). Fix w € Q. Let ¢ be an element of the intersection
of all sets I'(C;)(w), ¢ € N. Then ¢ € C(w), since C(w) is the intersection
of all sets C;(w), @ € N; see (3.10). Fix A* € X and w* € Q(w | A*).
Choose (¢} )ien from the product of all sets C;(w*), i € N/, with the property
Vi€ N : (p]| A*) = (¢} | A*); in this connection see (3.7). In addition,
(Ci(w*))ien converges monotonically to C(w*). As a corollary, (¢});en is the
sequence in C;(w*) € C. Therefore, it is possible to choose ¢* € C;(w*), a
nonempty directed set (D, <) and a mapping ! € (isot)[D; <] for which

* 6 *
(4.2) (D, 2, (@la))aep) — ¥".

Of course, from (4.2) the following property follows. Namely, Vz € X:
(D7 e ((ro,lk(d)(x))dGD) — (P*(IE)

By the basic property of T)-space [22]-[24] we have the equality for restric-
tions: (¢ | A*) = (¢* | A*). By properties of [ we have ¢* € C,(w*) under
n € N (here we use the following property: Ciy(w*) € F, k € N). As a
corollary, we obtain ¢* € C(w*), (¢ | 4*) = (¢* | A*). Since the choice of A*
and w* was arbitrary, we have ¢ € T'(C)(w).

Note that in the case when (Y,7) is a Hausdorfl space, the property
K? € Z takes place. From Proposition 4.2 the useful statement follows.
Namely, we have
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PROPOSITION 4.3 ([27]) Let (Y, 7) be a Hausdorff space, (C;)icn be a
sequence in K and C € 9. Then

(4.3) ((Coien ¥ €) = ((T(Ci))ien 4 T(C))-

If (Y,7) is a Hausdorff space, then K? € Z. The following statement
takes place.

PROPOSITION 4.4 ([27]). If (Y,7) is a Hausdorff space, (C;)icy s a
sequsence in K and C € z%, then the implication (4.3) is true.

The proof is a highly obvious ”sequential version” of the corresponding
proof of Proposition 4.2.

PROPOSITION 4.5. Let (Y,7) be a Ti- space [22]-[24]. Then NNT® € Z.

Proof. Let (C;)icx be a sequence in NN T? and C € Z% Moreover,
let (Ciliex I C. Then C € T% (we know that T® € Z). If j € N, then
C; = I'(C;) (by definitions of section 3). But, from Proposition 4.2 we have
the convergence (I'(C;))ienr 4 T'(C). As a corollary, I'(C) = C. So, C € N. The
proof is completed. 7

PROPOSITION 4.6. If (Y,7) is a Hausdorff space, then NNK? € Z.

The proof follows from Proposition 4.3.

PROPOSITION 4.7. If (Y,7) is a Hausdor(f space, then NN K € Z.

The proof obviously follows from Proposition 4.4. In conclusion of the
present section we note a useful corollary. Namely, if (Y, 7) is a Hausdorff
space, then K? € ZNZ and K € ZNZ; moreover, in this case the basic op-
erator I' has the property of the sequential continuity on K (see Proposition
4.3) and the analogous property on K% (see Proposition 4.4). So, for natural
case of a Hausdorff space (Y, 7) the spaces K and K are very "good”.

5. The basic iterations method. We consider iterated procedures in
z% and in 2T, where T € T4. In this section the first case is discussed. First
we will do several observations. If M is a subset of N (see (3.8)), then the

mapping

(5.1) w— |J Cw): @ — 1z
: CeM

is an element of N. As a corollary, we have the following property: if o € z%
and M is a subset of No[c], then (5.1) is an element of Ny[a] (note that
No[o] # @; the "empty-valued” mapping o, for which op(w) = 0 under
w € (, is an element of Ny[a]). In particular, the last statement takes place
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in the case M = Ny[a]. So, for o € Z% in the form of the mapping (na)[a] of
the kind

(5.2) W — U Cw): Q—2z

CGN()[C!]

we have the greatest in (2, C) element of Ny[c]. The determination (under
o € 2%) of the mapping (na)[c] (5.2) is our basic problem. So, Yo € z%

(5.3) ((na)[a] € N[a])&(VC € Ny[a] : C C (na)la]).

For the attainment of the above-mentioned goal we use the iterated procedure
on the basis of I" (see section 3). Moreover, below we consider analogous
procedures on the basis of the operators (3.4),(3.5). Therefore, we introduce
general definitions in terms of the mappings (3.4). In addition, we use the
natural construction (2.2). Then for T € &, we have in the form of +J the
identical mapping acting in 27 and (as a corollary) 7% = Iy |g=zr; under
k € N the equality v& = p o v&* takes place. In particular, (T*)cp, is a
sequence in Z; I'% = 48 and Vk € N/ : TF =T oI'*"1. In terms of the last
sequence we introduce the basic kind of an iterated process. Under C € Z9
we have T'°(C) = C and the following property: if m € Ny, n € A and
m < n, then I'*(C) C I'™(C). By Proposition 4.1 we obtain that in the case,
when (Y, 7) is a Hausdorff space, Yn € Nj:

(5.4) VU € K : TMU) € K)&(YV € K : T™(V) € K9).

Now, we introduce in the consideration an infinite power of set-valued map-
pings. If T € ¥y, then we define the mapping v operating from z7 into 27
by the following rule; namely, VC € zT Vt € T

(5.5) EE N 7O

keENy

Of course, we have '™ = ~4&; in addition, for C € 2%, w € Q and m € N
we have in the form of I°(C)(w) the intersection of all sets T*(C)(w), k €
Ny, m < k. Note that VC € z%:

(5.6) (TH(CY)ren $ T=(C).

The relation (5.6) is a simple corollary of the definition (5.5). The following
statement is true.
PROPOSITION 5.1. Let (Y, 7) be a Hausdorff space. Then

(VC € K? : T=(C) € K?)&(VC € K% : T=(C) € K.
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The proof follows from properties established in section 3 and from the
relations (5.4),(5.6). We have the following
PROPOSITION 5.2. If (Y,7) is a Hausdorff space, then

(V€ e K : (T oT®)(C) =T®(C))&(YC € K : (T oT*)(C) = I'°(C)).

The proof follows from Propositions 4.3, 4.4 and from (5.6).
From the monotonocity of I in the sense of (3.9) we have Vo € Z?VH €
No [Oé]:

(5.7) H T T(a).

Along with (5.7) it is advisable to note the obvious monotonocity of I'™ in
the sense of (3.9) and such simple fact that YC € z% : T(C) C C. The
following important statement is true.

THEOREM 5.1. If (Y,7) is a Hausdorff space, then Vo € K® U K2 :
I'*(a) = (na)|a].

The proof of Theorem 5.1 is the obvious combination of Proposition 5.2
and (5.7).

COROLLARY 1. Let (Y,7) be a Hausdorff space. Then

(Vo € KT : (na)la) € KN&(V3 € K : (na)[F) € K9).

The proof is the natural combination of Proposition 5.1 and Theorem 5.1.
The last corollary is a highly general fact meaning the validity of important
hereditary properties of the greatest nonanticipating set-valued selector with
respect to the initial set-valued mapping.

Note that N = {C € 2% | C = T=(C)}. We suppose VT € £y VC € zT:

(5.8) (DOM)[C] £ {w € T | C(w) # 0}.

We have in (5.8) the effective domain of set-valued mapping. Now we consider
the basic case T = 2 (see (5.8)). The following statement is true.

THEOREM 5.2 ([27]). If (Y,7) is a Hausdorff space and C € K? U K9,
then

(DOM)[T*(C))ken | (DOM)[T=(C)].
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The proof follows (in the case C € K) from the known property of cen-
tered systems of closed sets in compact spaces [21]-[24]. In "sequentially
compact” case the standard procedure of the choice of an convergent subse-

quence is used. From Theorem 5.2 in the case of a Hausdorff space (Y, 7) we
have VC € K% U KWw €

(T*°(CHw)=0) <= (Bn e N : T"(C)(w) = 0).

Now we consider the important question about the existence of nontrivial
nonanticipating set-valued mappings being selectors of the initial set-valued
mapping. The above-mentioned nontriviality is identified with the property
(DOM)[C] = Q for the considered mapping C € Z%. Suppose Va € 2%

(5.9) N[a] £ {a € N[a] | (DOM)[a] = Q}.

It is possible to consider elements of the set (5.9) as analogs of set-valued
quasistrategies of [1]-[6],[8, 18, 19]. Of course (see (5.7)), Va € 2% : (N°[a] #
0) = ((DOM)[T=(a)] = Q). If (Y,7) is a Hausdorff space, then Va €
K® UK

(5.10) (W[a] # ) <= (DOM)[[™(a)] = Q).

Under the proof of (5.10) Theorem 5.1 and (5.7) are used. It is useful to
introduce in the consideration the analogs of (one-valued) quasistrategies of
[17, 20]. Of course, we consider the "quasistrategies” solving some problem
which by initial set-valued mapping is defined. Namely, if C € 2%, then we
denote by n°[C] the set of all

he I C(w)

weS

such that
Vw €€ QVAE X VD € Yw| A): (h(w) | A) = (h(@) | A).

In this connection we recall (1.1) and constructions of [17, 20]. IfC € Z%, then
from n°[C] # 0 the statement (DO M)[I'>(C)] = Q follows. In the connection
with the problem of the existence of nonanticipating one-valued selector of
nonanticipating set-valued mapping we note (28]. It is advisable to consider
”partial” nonanticipating set-valued mappings. If C € 2%, then we denote .
by N,[C] the set of all mappings H € No[C] such that (DOM)[H] # §. It is
obvious that under C € Z% from N4 [C] # @ the statement (DOM)[I'*(C)] #
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@ follows. If (Y, 7) is a Hausdorff space and C € K*UK®, then the statements
NLy[C] # 0 and (DOM)[T(C)] # 0 are equivalent. Note that in Example 3.2
under a € z® with the property a(v(-)) # 0, v(-) € Q = C, we have NJy[a] =
@ (we leave the given obvious proof to the reader). From Propositions 4.6
and 4.7 the following statement follows.

PROPOSITION 5.3. Let (Y,7) be a Hausdorff space, C € Z% and (C:)icn
is a sequence in Z°. Moreover, let: (C;)ien be the sequence in K? or (C;)ien
be the sequence in K. Then

((Codien ¥ €) = (T=(C:))iew 4 T=(C))-

In the conclusion of this section we consider briefly a construction con-
nected with the notion of "universal” fixed points. In this part we use a
"stratification” of the operator I'. If A € X (see section 3), then we intro-
duce the operator I'4 € Z for which VC € 2% Vw € Q:

T4(C)(w) £ {f €Cw) |V € Q(w | A) If € C(@) :

(5.11) (F14)=(f|4)}.

From (3.7) and (5.11) we have the obvious property: if C € z% and w € Q,
then I'(C)(w) is the intersection of all sets T 4(C)(w), A € X. As a corollary,
we obtain the equality N= {C € 2% |VA € X : T4(C) = C}. But, the basic
property is defined by the following practically obvious statement.
PROPOSITION 5.4. I[fA€ X, thenT g0l 4 =T4.
The proof follows from (5.11). We obtain the important property of
idempotency of I' 4, where A € X. As a corollary, we have VA € X:

" A Q

(5.12)  (fp)Al={Ccez®|Ta(C H): H

A(L«) = C} = {FA(IL) el }

From (5.12) many useful corollaries follow. It is obvious that N is the in-
tersection of all sets (f.p.)[4], A € X. So, nonanticipating set-valued map-
ping are "universal” fixed points and only they. It is useful to supplement
this statement by some properties connected with the basic problem of the
(nonanticipating) selection. Proposition 5.4 is the basis of following con-
structions; the corresponding proofs are very simple. If « € z? and A € X,
then suppose (f.p. — a)[A4] £ {€ € (f.p)|A] | € C o}. From definitions of
section 3 the obvious statement follows: if a € 2% then Ny[a] is the inter-
section of all the sets (f.p. — a)[A4], A € X. Under a € z% it is useful to
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introduce S|o] = {H € 2% | H C «}; moreover, if A € X, then we have
(f.p. —a)[A] = {T'4(C) : C € S|a]} (see Proposition 5.4).

Until the end of this section we suppose that (Y, 7) is a Hausdorff space.
By analogy with Proposition 4.1 the following property is proved: if A € X,
then

(VC € K? : T4(C) € KNH&(VD € K% : T4(D) € K.

On this basis it is possible essentially to supplement the above-mentioned
representation of N: the set NN K? (the set NN K%) is the intersection of
all the sets {C € K | T4(C) = C} (of all the sets {C € K | T4(C) = C}),
A € X. These last sets assume a more simple representation connected with
Proposition 5.4. Namely, VA € X:

({CeK?|TAC) =C} = (fp)A)NEK? = {Ta(H) : H € K} )&
({C € K | T4(C) =C} = (fp)[A]NK? = {T4(H) : H e K2}).

For completion of these representations we consider again the problem of
the nonanticipating selection of set-valued mappings. If M € z%, then we

introduce in the consideration two following families: Sk[M] = 2 SIM]NK? =

{C €K |CT M}and Sc[M] £ S[M]NK® = {C € K? | C T M}. Moreover,
we have VA € X VM € z%:

(K = f.p. — M)[A] 2 (f-p. — M)[A]NK? = {T4(C) :
(5.13) ¢ e Sg[MN&((K — f.p. — M)[A] £ (f.p. — M)[A]N K2 =
= {T4(C) : C € Sk[M]).

We omit obvious proofs connected with Proposition 5.4. Return to the im-
portant case corresponding to the given compact-valued initial set-valued

mapping and the analogous mapping with sequentially compact values. In
addition, VM € z%

(No[M]NK? = [ (K~ fp.—M)[AD&(No[M]NKT = () (K~ f.p.— M)[A]).

Aex Aex

(5.14)

It is advisable to consider (5.13) and (5.14) in a natural combination. We
restrict ourselves to the consideration of the case of a compact-valued initial
mapping. Note that (5.14) is especially important by virtue of Theorem 5.1.
So, under M € K® we have I'*(M) = (na)[M] € Ny[M]NK®. In addition, in
this case we have (see (5.14)) in the form of I'°(M) the greatest in (2%, C)
element of intersection My £ N [M]NK? of all sets (K— f.p.— M)[A], A € X;
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namely, (na)[M] = (M) € Mg and VH € Mg : H C T'(M). As a
corollary, we have the following scheme of the determination of (na)[M] =
'°(M), where M € K®. Namely, under A € X it should be constructed
the set {T4(C) : C € Sg[M]} (or (K — f.p. — M)[A]). Later we consider all
common elements of the families {T'4(C) : C € Sg[M]}, A € X, obtaining
(as a result) Mg. Among them we choose the greatest element determined
by I'°(M); so, (na)[M] = I'°(M) is the greatest element of Mg. Now we
note a natural sequential version. Namely, let (until the end of the given
section) M € K%; it is possible to consider the intersection My of all sets
(K=fp.—M)[A] = {Ta(C): C € Sc[M]}, A € X. Then (na)[M] =T>(M)
is the greatest element of My; so, T°(M) € My and VH € M : H C
'°(M). So, for two above-mentioned cases (M € K® and M € K%) we
obtain a distinctive "algorithm on functional level”. For this "algorithm”
the operation connected with Proposition 5.4 is characteristic: the image
" of a set in the space Z®* under the operation of the mapping I" 4 should be
constructed.

6. The local analysis of nonanticipating set-valued mappings.
In this section we consider questions connected with a natural localization of
”global” nonanticipating mappings. In particular, we investigate the follow-
ing important question: when the initial set-valued mapping does contain a
nonanticipating set-valued selector with nonempty values? First we do sev-
eral absolutely simple observations. Denote by H the family of all sets H € ¥
such that

(6.1) VweH: |J Qw]|A)CH.

Aex

It is possible (see (3.7),(3.8)) to verify the following obvious property: if
C € N, then (DOM)[C] € H and Q \ (DOM)[C] € H. Below we consider

other corollaries of definitions on the basis of (6.1). Suppose Ny 2 {CeN]
(DOM)[C] # 0} and VT € &, : N} = {€C e N[T) | (DOM)[C] =T}. I
C € Ny and C £ (DOM)[C], then (C | C) € N. Moreover, we note that
Va € 29: Nyylo] = {H € Ny | HE a}. Let VT € Lo Va € 27

(6.2) No[o] £ {C € No[T; 0] | (DOM)[C] = T}.

Elements of (6.2) are nontrivial nonanticipating set-valued selectors of the
("partial” set-valued) mapping « and only they. By properties of H we ob-
viously have the following useful property: if o € z% H € Nyylo] and
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A £ (DOM)[H], then (H | A) € N%(a | A)]. Finally, as a corollary of
(5.7), we note that VC € z® VH € N[C] : (DOM)[H] C (DOM)[T>=(C)].
On this basis it is possible to obtain an useful estimate of effective do-
mains of nonanticipating selectors. If T € £y and o € ZT, then (3.6) is
the nonempty set, since "empty-valued” mapping on 7T is the element of
(3.6). As a corollary, Vo € Z%: Nyfa] # 0. Therefore, if « € z%, then
(POM)[e] £ {(DOM)[H]: H € No[e]} # 8, 6 € (DOM)[q].

PROPOSITION 6.1. If (Y,7) is a Hausdorff space and C € K? U K9,
then D 2 (DOM)[T>=(C)] = (DOM)[(na)[C]] is the greatest (in the sense of
inclusions) element of (DOM)[C]: (D € (DOM)[C))&(VH € (DOM)[C] :
H C D).

The proof follows from statements of section 5. We introduce a trivial
extension of partial set-valued mappings. If T € £; and o € zT, then
(@ — ext)[a] € 2% is def the mapping for which

(VteT: (0 - ext)|a](t) £ a(t)&(Vw e Q\T:

6.3) (@ — ezt)[e](w) £ 0).

Of course, it is possible to use (6.3) for the extension of nonanticipating
mapping. In this connection we recall the construction of H; we note that
H is simultaneously a Boolean algebra [25, Ch. I] and a topology of €; in
particular, we have VH € H: Q\ H € H. These properties follow from (3.2);
moreover, we note that Vw € Q VA € X Vo € Qp(w | 4) : Qo(w | 4) =

Qo(@ | A). For Ho £ H\ {0}, Ho C T, we have (in the connection with (6.3))
the property: if T € Hy and H € N[T}, then (} —ext)[H] € N. As a corollary,
Vo € 29 VT € Hy VH € Ny[T;(a | T)] : (@ — ext)[H] € Ny|a]. From this
property we have (see section 5) Va € ZYVH € Hy Yo € No[H;(a | H)]Vh €
H : a(h) € T=(a)(h). As a corollary, Va € ZXVH € Hy Yo € No{H; (a |
H)]: (DOM)[a] C (DOM)[I*(a)].

Until the end of the present section we suppose that the following natural
condition is correct.

CONDITION 6.1. The family X of section 3 is a basis of a filter of the
set X,i.e. VAe XVBeX3ICeX: CCANB.

PROPOSITION 6.2. Ifw € Q, then the union of all sets p(w | E), E €
X, is an element of Hy.

The proof is the obvious corollary of the definition of H and Condition
6.1. Therefore, we omit the corresponding reasoning.
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Note that Proposition 6.2 generate a new approach to the investigation
of nonanticipating set-valued mappings. Namely, introduce the following
partition

(6.4) GE{ Wwl|E): we}
Eex
of Q in the disjoint union of nonempty subsets; namely,
(GCH&(Q2= U G)&(VG,eGVG,€G:
(6.5) Geg
(G1 NGy # Q)) == (Gl = Gg))

Of course, in terms of (6.4),(6.5) it is possible to introduce an equivalence
relation. Namely, let def Vw; € Q Vw, €

(6.6) (w1 ~wy) <= (3G E€G: (w1 € G)&(wy € G)).
It is obvious that under w; € 2 and w, € {2 the equivalence
(6.7) (Wi ~w) <= (FA€X: (w1 | A) =(w2]A))

takes place. In terms of (6.6) and (6.7) it is possible to consider G as the
natural factor space. If (ag)geg € [1 Z°, then
ceg

(6.8) Ogegog: 1 — 2

is the mapping, for which VP € G Yw € P:

(6.9) (Dgeg a)w) 2 ap(w).

By (6. 8) (6.9) the natural operation of the glueing of local mappings is de-
fined. If (a¢)geg is an element of the product of all sets N[G], G € G, then
(6.8) is an element of N. Moreover, if C € Z and (ag)geg is an element of
the product of all sets Ny[G; (C | G)] (of all sets N2[(C | G)]), G € G, then
(6.8) is an element of Ny [C] (of N[C]). If T € £, and a € 27, then we suppose
that N2y[T’; a] is the set of all H € No[T; a] such that (DOM)[H)] # 0. 1t is
clear that under C € Z% and (Ug)geg € Ggg MNG; (C | G)):

(6.10) (Ogeg Ue € Ny[C]) <= (3P € G : Up € NY[P;(C| P))).

We note that under C € Z% the product of all the sets No[G; (C | G)], G € G,
is a nonempty set (we use axiom of choice).
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PROPOSITION 6.3. Let C € 2. Then the mapping o defined as

(6.11) (Us)eeg — Ooeg U = II MolG; (€ | G)] — NlC]
Geg

is bijective; moreover, N°[C] is the image of the set [I NZ[(C | G)] under
Geg

the mapping .

The proof is very simple corollary of the definitions (6.8),(6.9) and (6.11).

COROLLARY 2. IfC € 79, then: 1)N°[C] # 0 is equivalent to the re-
quirement YG € G : N&[(C | G)] # 6; 2N, [C] # O is equivalent to the
requirement 3G € G : Ny[G;(C | G)] # 0.

The proof is obvious by virtue of properties of the mapping (6.11); in par-
ticular, see (6.10). Moreover, here the simplest construction of an extension
on the basis of (6.3) should be used.

PROPOSITION 6.4. If G € G and o € 2%, then N3|o] = N3[G;al.

The proof is an obvious combination of definitions of section 3 (in par-
ticular, see (3.5),(3.6)) and the basic property of a filter basis; in this con-
nection see (for example) [22, 23]. In terms of Proposition 6.4 it is possible
to reformulate Corollary of Proposition 6.3 and previous relations. For ex-
ample, if C € zY, then the following conditions are equivalent: 1)N°[C] # @
(the statement about the existence of nonanticipating set-valued nonempty-
valued selectors of C); 2)N3y[G;(C | G)] # 0 under all G € G. Of course,
in Proposition 6.4 we consider the case @ = (C | G), where G € G. Now,
we omit many other useful corollaries of Proposition 6.4. The last statement
denotes under @ € ZT (where T € G) that for 3 € Ny[T;a] (3.6) two fol-
lowing properties are equivalent: 1)(DOM)[F] = T; 2)(DOM)|[G] # 0. This
equivalence follows (in fact) from (6.6),(6.7).

7. The parallel procedure of MPI. On the basis of localizations of
the previous section it is possible to construct a new representation of the
basic variant of MPI (see section 5). First we note several absolutely simple
circumstances refusing now Condition 6.1. So, unless otherwise stated, X
corresponds only to general suppositions of section 3. We recall (3.11) and
(3.12); moreover, VC € Z?VH € Hy:

(7.1) (TC) | H) =va((C | H)).

The proof of (7.1) follows immediately from the definitions of the families
H and Hp (see section 6). This property is supplemented by the obvious
corollaries of (3.11). Namely, if C € 2, H € £, h € H and k € N, then
T (C)(h) C ¥5((C | H))(h). Moreover, under C € z% H € £y and h € H we
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have T'°(C)(h) C v ((C | H))(h). Two last statements are realized with the
employment of mathematical induction and the property of monotonocity of
the mapping (3.4). On the other hand, from (7.1) the important property
follows; namely, VC € Z?VH € Hy Yk € Np:

(7.2) (T*(C) | H) = vx((C | H)).

As a corollary, from (7.2) we obtain the limit representation. Namely, VC €
Z9VH € Hy:

(7.3) (C=(C) | H) =g ((C | H)).

- For the cases characterized by the conditions of Theorem 5.1 we obtain (in
(7.3)) a fragment of the greatest nonanticipating set-valued selector of the
given set-valued mapping. These properties (7.2),(7.3) are correct in the
general case of the family X of section 3. But, new useful statements are
realized under Condition 6.1.

So, we postulate, until the end of the given section, that Condition 6.1 is
satisfied: X is a filter basis of X. Then it is possible to use the construction of
the coalescence on the basis of (6.8),(6.9). We take into account the following
circumstance. Namely, for C € z® and k € A} in the form of (YE((C | G)))ceg
we have an element of the product of all sets Z6, G € G. Moreover, under
C € z% it is true that (Y&((C | G)))geg is an element of the above-mentioned
product.

PROPOSITION 7.1. Let C € 2% and k € Ny. Then T*(C) is the sewing
of all the fragments vE((C | G)), G € G, in the sense of (6.8):

T*(C) = Ogeg 6((C | G)).

The proof is obtained by the obvious combination of (6.5),(6.9) and (7.2).
THEOREM 7.1. IfC € 2%, then T=(C) is the sewing of all the fragments
YF((C| @), G €G, in the sense of (6.8):

I'*(C) = Ogeg 73 ((C | G))-

For the proof it is sufficient to use the combination (6.5),(6.9) and (7.3).
In spite of the fact that two last statements are established by very simple
methods, it is useful to note their importance. Namely, in the form of the
procedure of MPI on the basis of I" (see section 3) we have, in fact, a distinc-
tive analog of some ” perceptron” realized by the system of parallel processes
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characterized by operations of the mappings (analogous to (3.4)) on squares
G € G. Namely, we realize independent iterated procedures on the basis
of operators (3.4),(3.5) under T = G € G. Formally these procedures are
defined by powers of 7o, G € G. Really, under the given initial mapping
C € z% we obtain the system of sequences of iterations in z%, G € G. In
addition, the restrictions (C | G), G € G, of the (initial) set-valued mapping
C are used in the capacity of starting points. So, we have the system of
parallel iterated processes for which the limit elements v°((C | G)), G € G,
are coalesced in I'*°(C) (see Theorem 7.1). Of course, here we have a parallel
logic procedure, the realization of which (in the form of concrete iterated
sequences) are connected with many difficultes.

8. Addition. In this section we consider some questions objectively
connected with a construction similar (in fact) to Proposition 6.4. But, first
for the general case of the family X’ of section 3, we note the following obvious
property; namely, N (3.8) is the set of all mappings C € z% for each of which
Y, € QVwy € QVA € X

(Wi |A)=(w2 | A4) = ({(F4): feClw)}={(f]14): feCllw)}).

By this relation the natural connection of concrete definitions similar to (1.2)
and general definitions of section 3 (see (3.7)) is established. It is known that
in the procedures of MPI used for solving DG, the following situation arises
sufficiently often. Namely, in some DG under the determination of the value
of DG by MPI, the above-mentioned value as a position function is defined
after a finite number of iterations. And, what is more, this characteristic
number may be highly small (in this connection also it is advisable to re-
call the known notion of regular DG [11]-[14]). This known circumstance
[1]-[6], [8] generates the natural question about conditions for which the cor-
responding iterated process is stabilized after a finite number of ”steps”. Of
course, this question is remained valid for the considered ”direct” version of
MPI. Namely, if o € Z%, then we are interested in the following possibility:
(na)[a] = I'*(a), when k € N. Of course, the given question was justified
in the case (na)[a] = I'°(a). The last case takes place (in particular) under
conditions used in Theorem 5.1. We consider the given very difficult question
only in a specific case corresponding to the situation I'*(a)(w) = 0. But first
we consider some auxiliary statements connected (in idea) with constructions
of section 6. Unless otherwise stated, then we suppose that Condition 6.1 is
correct.
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PROPOSITION 8.1. If G € G and C € 2%, then the following implication
18 true:

(DOM)[va(C)] # 8) = (DOM)[C] = G).

Proof. Fix G € G and C € z€ for which (DOM)[yc(C)] # 0. Choose
w € (DOM)[yg(C)]. Then w € G and vg(C)(w) # B. Choose f € vg(C)(w).
Recall (3.7). As a corollary, f € C(w) has the property

(81) VA€ XVoe (Ge)Gw|AlAf eC@): (F|A)=(f]A).

Let p € G. Consider the set C(p). For this we choose (see (6.4)) n € Q
such that G is the union of all sets Qy(n | ), £ € X. Choose £; € X and
Yy € X for which w € Qyp(n | £1) and p € Qo(n | £2). We use Condition
6.1. Namely, choose ¥ € X for which £ C £, N E,. Then (see (3.2)) (w |
L)=Mm]Z)=(p|Z). As a corollary, by (3.1) we have p € (Ge)[G;w | Z]
under ¥ € X. By (8.1) we obtain that 3f € C(p) : (f | X) = (f| ). Then
C(p) # 0. We have p € (DOM)|[C]. So, G C (DOM)|C]. As a corollary,
(DOM)[C] =G. ‘

- Note that in Proposition 8.1 it is possible to consider the case C =
(o | G), where o € Z% In this connection we recall (6.5) and (7.1). So,
Va € 29VG € G:

(8.2) (DOM)[(T(a) | G)] # 0) = (DOM)[(a | G)] = G).
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